SBIR Phase I:A Resilient and Underactuated Robotic Hand Capable of Both Power and Precision Grasping

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1014156
Agency Tracking Number: 1014156
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: IC
Solicitation Number: NSF 09-609
Small Business Information
DUNS: 620793612
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 David Wilkinson
 (617) 252-9000
Business Contact
 David Wilkinson
Title: PhD
Phone: (617) 252-9000
Research Institution
This Small Business Innovation Research (SBIR) Phase I project proposes a robotic grasper based on a novel torque switching mechanism, and a structurally compliant finger with embedded sensing. Robotic hands in industry tend to be fragile and lack the dexterity to perform a wide range of grasping and manipulation tasks. Robotic hands in academia tend to be more dexterous yet tend to be bulky, possessing large controller cabinets and/or forearms. Furthermore, when a collision occurs within a robotic workcell it is usually the hand (gripper) that makes impact. The proposed hand will have greater dexterity than a conventional gripper, being able to perform both power grasps and pinch grasps on large and small objects and yet be able to absorb and survive major collisions fully intact while alerting the robot system to move more cautiously. The Phase-I project objectives are: (1) create prototypes of an active torqueswitching mechanism; (2) create prototypes of a resilient polymer link with an embedded sensor; (3) build a prototype 2-fingered hand; (4) evaluate functionality of the prototype hand. Phase II will result in a compact, durable hand capable of grasping and manipulating a large range of objects. The broader impact/commercial potential of this project is three-fold; there will be a general commercial impact, a direct commercial impact, and a societal impact. The general commercial impact addresses the shortcomings of metal gripper devices available today. These gripper devices discourage the use of robotic systems, thereby undermining manufacturing productivity. The proposed solution improves manufacturing competitiveness by enabling easier adoption of robotic work cells. The direct commercial impact is that local (US) workers will assemble, test, and ship these products. Ninety-five percent of the components will be sourced from US fabricators and OEM suppliers, boosting the US economy. Meanwhile, the company exports 50% of its finished products to foreign markets. The societal impact stems from the idea that the risk of damage to an expensive robot discourages innovation and keeps the programming to a select few programming ?experts?. The proposed solution invites production line workers back into the process. Without the high cost of collisions, the worker (true expert) is encouraged to experiment and program process improvements. Corporations otherwise automate these workers out of their skilled jobs who then join the unemployed while the company literally loses touch with the ability to understand and innovate processes.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government