Zinc Oxide Based Photonics Devices

Award Information
Agency: Department of Defense
Branch: Navy
Contract: N00014-03-M-0259
Agency Tracking Number: N031-0877
Amount: $69,956.00
Phase: Phase I
Program: SBIR
Awards Year: 2003
Solitcitation Year: N/A
Solitcitation Topic Code: N/A
Solitcitation Number: N/A
Small Business Information
MOXTRONICS, INC.
504 N. Village Cir., Columbia, MO, 65203
Duns: 126659916
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Yungryel Ryu
 CEO/President
 (573) 882-3174
 ryuy@moxtronicsinc.com
Business Contact
 Yungryel Ryu
Title: CEO/President
Phone: (573) 882-3174
Email: ryuy@moxtronicsinc.com
Research Institution
N/A
Abstract
Recent experimental data indicate ZnO-based photonics devices such as light emitting diodes (LEDs) and laser diodes (LDs) that use arsenic doped p-type ZnO would have technical and operational advantages to those based on GaN. Principal advantages includeease of film growth at lower cost, larger exciton binding energy to give higher brightness in emisson and sensitivity in detection, the availability of single crystal ZnO substrates to reduce defect densities, and existence of wet chemical etchingprocesses for use in the fabrication process. A shallow acceptor level increases the hole carrier activation ratio. Room temperature device operation should show higher efficiency, higher powers, and longer lifetimes. In Phase I, ZnO multilayer PN and PINstructure devices for UV light emitting and receiving applications will be fabricated using a new film growth technique that provides high quality films. Film materials will be characterized. Devices will be demonstrated and tested, and an optimizationanalysis will be made for output power performance, lifetime, gain-bandwidth product, excess noise and stability. Using these simple structures, feasibility for construction of multiquantum well structured devices will be made. Fabrication of ZnOquantum-well photonic devices will be undertaken in Phase II efforts. Device applications include opto-electrical communication from ship-to-ship, ship-to-submarine, or soldier-to-soldier; optical sensors such as UV detectors for missile plumes; civilianapplications such as full-colored displays, DVDs, and high-power, high-efficiency white lighting; NASA space applications requiring lightweight, compact devices strongly resistive to high-energy radiation; and global air-pollution monitoring by UV, orcosmic radiation detection.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government