Muon Capture, Phase Rotation, and Precooling in Pressurized RF Cavities

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$750,000.00
Award Year:
2006
Program:
STTR
Phase:
Phase II
Contract:
DE-FG02-05ER86252
Award Id:
72449
Agency Tracking Number:
79221B05-I
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
552 N. Batavia Avenue, Batavia, IL, 60510
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
RollandJohnson
Dr.
(757) 870-6943
rol@muonsinc.com
Business Contact:
RollandJohnson
Dr.
(757) 870-6943
rol@muonsinc.com
Research Institute:
Fermi National Accelerator Laboratory
Bruce Chrisman
Kirk Road and Pine Street
P.O. Box 500
Batavia, IL, 60510
(630) 840-2359
Federally funded R&D center (FFRDC)
Abstract
Bright muon beams are required for muon colliders, neutrino factories, and intense muon sources. To create the beams, high energy protons hit a target to generate pions that decay into a diffuse cloud of muons. The muon cloud is then: (1) captured in strong magnetic fields, (2) bunched, (3) phase-energy rotated by strong radio frequency (RF) electric fields, and (4) pre-cooled by passing the beam through a low-Z energy absorber. Because these four processes are done sequentially, the process is inefficient, requires extra length and expense, and suffers large muon losses. Pressurized RF cavities will enable higher gradient magnetic fields than is possible with evacuated cavities, thus allowing more options for the initial stages of a muon cooling channel. This project will develop techniques for using pressurized RF cavities for the simultaneous capture, phase rotation, bunching, and precooling processes. In Phase I, an experimental study of the RF breakdown of metals in dense gas was conducted. An RF cavity, pressurized with dense hydrogen gas, was operated for the first time in a strong magnetic field, demonstrating the feasibility of pressurized cavities for muon cooling applications. Simulations were used to demonstrate the combined cooling and bunching provided by the pressurized cavities. In Phase II, experiments will be conducted to systematically study the breakdown properties of gases and metals in beams of ionizing radiation and in strong magnetic fields. Simulations will be used to design the capture, phase rotation, and precooling systems of muon beams in pressurized cavities. Techniques will be developed for the creation of bunch structures appropriate for coalescing at high energy for muon collider applications. Commercial Applications and other Benefits as described by the awardee: The generation of intense muon beams with small emittances should benefit many branches of science, where such beams are needed for muon colliders, Higgs and neutrino factories, bright muon sources, and studies of muon-catalyzed fusion.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government