Nanocrystalline Materials for Removal of Reduced Sulfur and Nitrogen Compounds from Fuel Gas

Award Information
Agency: Environmental Protection Agency
Branch: N/A
Contract: EP-D-08-065
Agency Tracking Number: EP-D-07-038
Amount: $225,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2008
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
1310 Research Park Dr., Manhattan, KS, 66502
DUNS: 946856804
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Slawomir Winecki
 Senior Scientist
 (785) 537-0179
 slawek@nanmatinc.com
Business Contact
Phone: () -
Research Institution
N/A
Abstract
Integrated gasification combined cycle (IGCC), which uses a gasilier to convert coal to fuel gas, and then uses a combined cycle power block to generate electricity. is one of the most promising technologies for generating electricity from coal in an environmentally sustainable way. IGCC has many advantages over traditional technologies including: higher efficiency, lower pollutant emissions, and a possibility of carbon capture and sequestration. One of the remaining challenges for the IGCC is the need to develop a cleanup technology to remove reduced sulfur and nitrogen compounds from the hot fuel gas at gasification operating temperatures. NanoScale Corporation proposed development of nanocrystalline sorbents and catalysts for hot gas cleanup technology to allow for removal of reduced sulfur (H2S and COS) and ammonia pollutants from coal-generated fuel gases at gasification operating temperatures. In Phase I, several sorbents and catalysts were synthesized and evaluated with real fuel gas from the gasifier at Western Research Institute (WRI). These sorbents and catalysts were tailored to selectively react with reduced sulfur and nitrogen compounds present in fuel gas and were found to be immune to other components of the fuel gas. Two materials, a sorbent for removal of reduced sulfur pollutants and a catalyst for ammonia decomposition, were found to be particularly effective approach proposed by NanoScale utilizes manufacturing methods that are easily scalable, cost efficient, and environmentally friendly. In the proposed Phase II project, the most effective Phase I materials will be optimized, and their ideal predominance parameters will also be determined to enable most efficient operation under IGCC fuel gas conditions. The testing will include both laboratory scale experiments, as well as pilot-scale demonstrations with real fuel gas at WRI. The results of the proposed project should clearly demonstrate the advantage of using nanocrystalline materials for hot fuel gas cleanup and the feasibility of the NanoScale approach. The proposed project offers environmental benefits that can revolutionize current control methods by providing sorbent and catalyst materials that are technically superior to existing materials. Possible applications of the proposed technology include IGCC plants and other pollution control systems. Benefits offered by nanocrystalline sorbents, including enhanced chemical kinetics and increased removal capacities, have been demonstrated for many toxic chemicals and pollutants. NanoScale is uniquely qualified for the proposed development since it is a leader in the field of reactive nanocrystalline materials.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government