Electrostatic Self-Assembly of Nanocomposite Electro-Optic Materials

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$69,999.00
Award Year:
2002
Program:
SBIR
Phase:
Phase I
Contract:
NAS3-02018
Award Id:
56525
Agency Tracking Number:
012976
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
P.O. Box 618, Christiansburg, VA, 24068
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
Kristie L.Cooper
Research Scientist
(540) 953-1785
klcooper@nanosonic.com
Business Contact:
Richard OClaus
President
(540) 953-1785
roclaus@nanosonic.com
Research Institute:
n/a
Abstract
NanoSonic and a major U.S. aerospace company would work together during the Phase I NASA SBIR program to develop a ground-based experiment to evaluate the potential advantages of the nanoscale self-assembly of electro-optic materials in space. For use in low-voltage, high frequency electro-optic modulators, such materials require the internal nanoscale alignment of molecular dipoles. Conventional guest-host polymer-based electro-optic modulator materials achieve such alignment through the application of a large electric field at elevated temperatures, followed by cooling of the polymer to effectively freeze in the dipolar alignment. However, since the resulting material is in a nonequilibrium state, this alignment relaxes with time and temperature, and modulator performance decreases. Biologically-inspired liquid phase self-assembly processes have been demonstrated to yield improved molecular alignment, without the need for electric field poling. Additional improvements in alignment and resulting electro-optic properties may be possible by avoiding the influence of the gravitational field on intermolecular dynamics during the self-assembly process. During the Phase I program, a self-contained and simple terrestrial experiment will be developed to allow the evaluation of the effect of gravitational effects on the molecular alignment of electro-optic materials during self-assembly. Experimental evaluation will be performed in cooperation with NASA.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government