Polymer MEMS Nanostructured Sensors for Coating Analysis and Health Monitoring of Nonstructural Materials

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-05-M-5039
Agency Tracking Number: F051-134-1539
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2005
Solicitation Year: 2005
Solicitation Topic Code: AF05-134
Solicitation Number: 2005.1
Small Business Information
P.O. Box 618, Christiansburg, VA, 24068
DUNS: 008963758
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Andrea Hill
 Sensors Group Leader
 (540) 953-1785
Business Contact
 Richard Claus
Title: President
Phone: (540) 953-1785
Email: roclaus@nanosonic.com
Research Institution
NanoSonic proposes to develop a Polymer MicroElectroMechanical System (PMEMS) device-based sensor for the health-monitoring of wear and corrosion in coatings for this Air Force SBIR program. During Phase I, NanoSonic would design and fabricate novel electrically-conductive, nanostructured thin film sensors formed by Electrostatic Self-Assembly (ESA) to detect surface-related phenomena, such as wear and corrosion, of military aircraft non-structural components. With recent development of Metal RubberTM (MR), we now have the opportunity to implement such Polymer MEMS nanostructured sensors into coatings and materials. MRTM, a new free-standing multifunctional nanostructured material that has high electrical-conductivity, low modulus, and low weight, can be used as an in-situ sensor of chemical modifications and breakdown of surface coatings. NanoSonic has established techniques to control multiple constitutive material properties in coatings and free-standing organic/inorganic thin and thick materials using molecular layer-by-layer ESA processes, by varying the type, size, and structure of incorporated molecules. We would use this low-cost method to fabricate conformal conductive coating materials that could be easily applied on existing composite structural components. MRTM elements may be incorporated into the coating by patterning or ink-jet printing. Integrating co-located interconnected RF circuits into the coating would allow for remote RF mapping of the coating properties.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government