A Low-Cost, Lightweight MTM Enhanced Conformal Antenna for GPS/Communication Systems

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-08-M-1383
Agency Tracking Number: F081-068-0505
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2008
Solicitation Year: 2008
Solicitation Topic Code: AF081-068
Solicitation Number: 2008.1
Small Business Information
P.O. Box 618, Christiansburg, VA, 24068
DUNS: 008963758
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Bradley Davis
 VP of Engineering
 (540) 953-1785
Business Contact
 Lisa Lawson
Title: Contracts Administrator
Phone: (540) 953-1785
Email: llawson@nanosonic.com
Research Institution
This Phase I SBIR program will result in the design, simulation and construction of a prototype of a multi-band GPS/Communication system antenna. To accomplish this task, NanoSonic is staffed or has teamed with a unique combination of engineers, chemists and materials scientists capable of designing, simulating and fabricating this array. NanoSonic will consult with the USAF and a defense prime integrator for guidance and application metrics. The NanoSonic PI is antenna engineer with many years experience in both hardware implementation and simulation software construction. In Phase I NanoSonic would design a suitable antenna meeting the constraints for gain, polarization, bandwidth, scanning and physical characteristics. In the design of the antenna, NanoSonic would employ a state-of-the-art computational electromagnetics code to achieve rapid design iterations. NanoSonic would then construct structured antennas using the unique inkjet and self-assembly processes that are used to create Metal Rubber™ in combination with unique dielectric and metamaterial substrates to create a conformal antenna. These self assembled materials can be applied to severe, doubly curved surfaces without de-bonding or cracking; the inkjet process has been employed to fabricate array antennas and microstrip feeds. NanoSonic foresees integrating these processes to create highly integrated antennas and antennas in structural composites.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government