Ultralightweight PV Array Materials for Deep Space Mission Environments

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$100,000.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
NNC07QA41P
Award Id:
83797
Agency Tracking Number:
066210
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
1485 South Main Street, Blacksburg, VA, 24060
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
008963758
Principal Investigator:
JenniferLalli
Principal Investigator
(540) 953-1785
jlalli@nanosonic.com
Business Contact:
LisaLawson
Contracts Administrator
(540) 953-1785
llawson@nanosonic.com
Research Institute:
n/a
Abstract
Photovoltaic arrays for future deep space NASA missions demand multiple functionalities. They must efficiently generate electrical power, have very large areas and very low areal mass densities, mechanical flexibility to allow them to be compactly stowed and deployed in space, and the ability to simply survive and operate in the deep space environment. The objective of this NASA program is to develop ultra low mass density fabric materials with patterned conductive traces capable of conducting high electrical current densities and able to survive the harsh thermal and mechanical environmental conditions required by deep space missions. Such multifunctional Gossamer materials would provide both adequate mechanical support and low loss electrical interconnect network functionalities for power generation arrays. NanoSonic won one of NASA's 13 "nanotechnology product awards" for 2006, recently announced in NASA Technical Briefs, for its electrically conducting and mechanically flexible Metal RubberTM sheet materials. The proposed program would build on this successful Metal RubberTM technology to synthesize patterned, electrically conductive, low-weight fabrics rather than sheet materials. During Phase I, NanoSonic would produce prototype high performance, ultra low mass density support fabrics with integrated patterned electrically conductive vias and demonstrate properties, and demonstrate the feasibility of large-scale rapid production of such materials.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government