Biofilm polymicrobial infection-resistant implants for otologic application

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$161,470.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
1R43DC008907-01
Award Id:
85528
Agency Tracking Number:
DC008907
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
NOVAFLUX TECHNOLOGIES, INC., 1 WALL ST, PRINCETON, NJ, 08540
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
943652065
Principal Investigator:
MOHAMEDLABIB
() -
Business Contact:
MOHAMEDLABIB
() -
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): Over one-quarter of all oral antibiotics is prescribed for acute otitis media in the United States. Myringotomy with tympanostomy tube insertion has become the treatment of choice for children with chronic otitis media, with more than two million tubes sold annually in the US. Tympanostomy is the most common pediatric procedure under general anesthesia in the developed world. Chronic post-tympanostomy tube otorrhea is often refractory to treatment and inflicts significan t morbidity in the form of hearing loss and long-term middle ear dysfunction. The Co-investigators have confirmed that chronic middle ear infection is a mucosal biofilm disease, and this may explain why otitis media is often difficult to treat with antibio tics. Biofilm on the surface of tympanostomy tubes may be a primary factor in post-tympanostomy otorrhea, and may thus be a source of recurrent infections. Current tympanostomy tubes are ineffective in retarding bacterial attachment and biofilm development . We have discovered that a specific combination of antimicrobial/antibiotic agents incorporated in approved implant host polymers is very effective against bacterial attachment and biofilm development of organisms associated with otitis media. The goal of this study is to develop and test biofilm polymicrobial- resistant implant materials for use as tympanostomy tube implants. The Specific Aims are: 1) to develop polymeric implant materials with selected combinations of antibacterial/antibiotic agents usin g novel processing methods, and to study their release kinetics, 2) to evaluate bacterial attachment and biofilm development against organisms associated with otitis media, and to define the characteristics of the various antimicrobial/antibiotic combinati ons to determine MIC values pertaining to planktonic and biofilm inhibition, and 3) to assess the ototoxicity/cytotoxicity of the various antimicrobial/antibiotic combinations. The central innovation of this study is the development of effective implant ma terials by using special combinations of antimicrobial agents that could specifically retard biofilm development and minimize recurrence of disease, with emphasis on otitis media.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government