Application of QDs-based nanotyping technology in the evaluation of chemotherapy

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$400,929.00
Award Year:
2009
Program:
SBIR
Phase:
Phase I
Contract:
1R43CA141870-01
Agency Tracking Number:
CA141870
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
OCEAN NANOTECH, LLC
OCEAN NANOTECH, LLC, 2143 Worth Lane, SPRINGDALE, AR, 72764
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
155516987
Principal Investigator:
Y WANG
(479) 751-5500
AWANG@OCEANNANOTECH.COM
Business Contact:
ALICE BU
() -
AWANG@OCEANNANOTECH.COM
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): The goal of this SBIR project is to develop a multiplexing method to simultaneously quantify the expression levels of biomarkers in heterogeneous tumor tissue. The current method for diagnostic and prognostic classifica tions of biomarkers is based on immunohistochemistry (IHC). However, the immunoenzyme (HRP- based) IHC method has a single color nature and is unable to perform multiplexed molecular profiling. Moreover, IHC remains semi-quantitative and subjective, result ing in considerable inter-observer variation in results. Quantum dots (QD) are a new class of biological detection labels which present a broad range of biomedical applications. It allows biomarker detection and analysis in highly heterogeneous samples and rare cell populations. The multiplexed QD technology can be used to examine a panel of cancer biomarkers on the level of single cells (in situ analysis), which is not possible with other types of nanotechnology-based assays. This NIH SBIR project intends to develop a QDs-based nanotyping method to monitor the chemotherapy efficacy in prostate cancer. Specifically, activation of the anti-apoptotic bradykinin-survivin signaling pathway was found to be critical to Docetaxel (Taxotere) resistance in prostate c ancer cells, therefore, bradykinin- survivin could be used as novel biomarkers to predict the chemotherapy response in hormone-refractory prostate cancer patients. We will establish a multiplexed QDs-based, minimally-invasive technology to monitor the acti vation status of the bradykinin-survivin pathway for evaluating chemotherapy efficacy in prostate cancer models. In this SBIR phase I project, we will prepare high quality QDs with high bio-affinities and low non- specific binding. Furthermore, the QD-anti body conjugates will be tested in the prediction of response to docetaxel chemotherapy in a human prostate cancer xenograft model. In Phase II, our focus will be shifted to improving the sensitivity of the proposed system and developing a quantification me thod. The final delivery of this project will be a highly sensitive, clinically applicable Ab-QD conjugation kit for prostate tumor imaging that will predict the response of chemotherapy. PUBLIC HEALTH RELEVANCE: Prostate cancer (PCa) is the most common ca ncer occurring among men in the United States. In 2007, an estimated 218,890 new cases of PCa were diagnosed in the U.S. Enhancing monitoring cancer therapy is very critical to increase the survival rate of patients. The proposed QD nanotyping technology w ill provide a platform to monitor chemotherapy efficacy and guide physicians in making decisions for the appropriate therapy. The successful development of this project can greatly increase the survival rate of these patients.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government