Printable Nano-Field Effect Transistors Combined with Carbon Nanotube Based Printable Interconnect Wires for Large-Area Deployable Active Phased-Array

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX08CB39P
Agency Tracking Number: 075114
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2008
Solicitation Year: 2007
Solicitation Topic Code: O1.04
Solicitation Number: N/A
Small Business Information
Omega Optics, Inc.
10435 Burnet Road, Suite 108, Austin, TX, 78758-4450
DUNS: 102861262
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Maggie Chen
 Principal Investigator
 (512) 996-8833
 maggie.chen@omegaoptics.com
Business Contact
 Clara Chen
Title: Business Official
Phone: (512) 996-8833
Email: clara.chen@omegaoptics.com
Research Institution
N/A
Abstract
Flexible electronic circuits can be easily integrated with large area (>10m aperture), inflatable antennas to provide distributed control and processing functions. Flexible electronic circuits can also perform dynamic antenna sub-arraying and gain pattern reconfiguration for active phased-array antenna (PAA) and thus significantly enhance the reliability of NASA's space radar systems. However, existing flexible electronics are based on organic semiconductor materials that have carrier mobility four orders of magnitude lower than conventional single crystal silicon. Such low carrier mobility limits the operating speed of flexible electronics to a few kilohertz and thus makes it unsuitable for multi-GHz RF antenna applications. The proposed research aims to develop a printable silicon nano-FET with high carrier mobility of over 400 cm2/V•s. Such high carrier mobility provides an unprecedented opportunity to achieve flexible electronics with high operating frequency of over 40GHz. We will also develop procedures for printing of conducting interconnect wires using carbon nanotubes, which is critical for printing semiconductors. Based on our past experience on printable silicon nano-FET and printable carbon nanotube wires, the high-speed flexible electronics are expected to be integrated with large-area, inflatable radar antennas and achieve smart antenna systems for high performance and reliable space operations.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government