SBIR Phase II: Novel Monolithically Integrated Wavelength-Range-Selectable and Widely-Wavelength-Tunable Semiconductor Lasers with High Functionalities

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 0646478
Agency Tracking Number: 0539823
Amount: $500,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2007
Solicitation Year: 2005
Solicitation Topic Code: EL
Solicitation Number: NSF 05-557
Small Business Information
OptoNet Inc.
828 Davis Street, suite 206, Evanston, IL, 60201
DUNS: 141545447
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: Y
Principal Investigator
 Jing Ma
 (847) 208-3918
Business Contact
 Jing Ma
Title: PhD
Phone: (847) 208-3918
Research Institution
This Small Business Innovation Research (SBIR) Phase II project is focused on the use of new technology for the development of a novel wavelength selectable or wavelength tunable laser. Such lasers are central to next-generation photonic technologies and optical networks, and have a wide range of applications including instrumentations, optical sensing, medical, military, imaging, and high bandwidth DWDM optical networks. The company has recently developed a powerful integrated super-high-resolution compact curved diffraction grating (SCG) on InP chip with the highest spectral resolution and the smallest size. Applying to lasers, SCG allows combining the simple-control and high-performance advantage of external cavity laser with the high ruggedness and low-cost advantage of monolithic integration. The Proposed wavelength-selectable or tunable lasers will result in extended tunable laser capabilities, not achievable currently, such as simpler control electronics, direct modulation capability up to 2.5Gb/s, 10Gb.s modulation with integrated modulator, ultra-compact laser module size, lower power consumption, and lower costs via monolithic integration. The proposed wavelength-selectable or wavelength-tunable SCG lasers will involve a number of new technological approaches such as the high-resolution Integrated Curved Diffraction Grating, Cavity-Grating Frequency Offset detector, and other integrated functionalities (e.g. integrated shutter/amplifier, integrated modulator etc). These are combined capabilities that can only be realized with chip-scale monolithic integrations, and are not available currently. IF successful the proposed solution, a single wavelength selectable SCG laser, will replace the use 40x fixed wavelength DFB lasers to cover the 40 DWDM ITU Wavelength Channels. Thus the proposed solution, WS-SCG laser, will reduce the DWDM laser inventory by 10-40x while having substantially simpler control electronics, more compact module size, lower power consumption, and higher functionalities than those of current tunable lasers, and could be engineered to give higher output and higher spectral purity. The potentially new capabilities of SCG lasers will open up many application areas including: (1)DWDM/CWDM/OCDMA Networks; (2) WDM On Chips; (3) Instrumentations; and (4) Optical sensing and medical equipments. Applications to these areas require wavelength selectable or tunable lasers with higher output, higher spectral purity, wider wavelength tunability, and lower cost.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government