Optimal Micro-Data Switching: An Enhanced Framework and Decision Tool for Confid

Award Information
Department of Health and Human Services
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
OPTTEK SYSTEMS, INC., 1919 Seventh Street, BOULDER, CO, 80302
Hubzone Owned:
Socially and Economically Disadvantaged:
Woman Owned:
Principal Investigator:
() -
Business Contact:
(303) 447-3255
Research Institution:
DESCRIPTION (provided by applicant): The objective of this project is the development of an innovative technique to avoid disclosure of confidential data in public use tabular data. Our proposed technique, called Optimal Data Switching (OS), overcomes the limitations and disadvantages found in currently deployed disclosure limitation methods. Statistical databases for public use pose a critical problem of identifying how to make the data available for analysis without disclosing information that would infri nge on privacy, violate confidentiality, or endanger national security. Organizations in both the public and private sectors have a major stake in this confidentiality protection problem, given the fact that access to data is essential for advancing resear ch and formulating policy. Yet, the possibility of extracting certain sensitive elements of information from the data can jeopardize the welfare of these organizations and potentially, in some instances, the welfare of the society in which they operate. Th e challenge is, therefore, to represent the data in a form that permits accurate analysis for supporting research, decision-making and policy initiatives, while preventing an unscrupulous or ill-intentioned party from exploiting the data for harmful conseq uences. Our goal is to build on the latest advances in optimization, to which the OptTek Systems, Inc. (OptTek) research team has made pioneering contributions, to provide a framework based on optimal data switching, enabling the Centers for Disease Contro l and Prevention (CDC) and other organizations to effectively meet the challenge of confidentiality protection. The framework we propose is structured to be easy to use in a wide array of application settings and diverse user environments, from client-serv er to web-based, regardless of whether the micro-data is continuous, ordinal, binary, or any combination of these types. The successful development of such a framework, and the computer-based method for implementing it, is badly needed and will be of value to many types of organizations, not only in the public sector but also in the private sector, for whom the incentive to publish data is both economic as well as scientific. Examples in the public sector are evident, where organizations like CDC and the U. S. Census Bureau exist for the purpose of collecting, analyzing and publishing data for analysis by other parties. Numerous examples are also encountered in the private sector, notably in banking and financial services, healthcare (including drug companies and medical research institutions), market research, oil exploration, computational biology, renewable and sustainable energy, retail sales, product development, and a wide variety of other areas. PUBLIC HEALTH RELEVANCE: In the process of accumulating an d disseminating public health data for reporting purposes, various uses, and statistical analysis, we must guarantee that individual records describing each person or establishment are protected. Organizations in both the public and private sectors have a major stake in this confidentiality protection problem, given the fact that access to data is essential for advancing research and formulating policy. This project proposes the development of a robust methodology and practical framework to deliver an effic ient and effective tool to protect the confidentiality in published tabular data.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government