Advanced Physics-Based Modeling of Discrete Clutter and Diffuse Reverberation in the Littoral Environment

Award Information
Department of Defense
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Planning Systems, Inc.
12030 Sunrise Valley Drive, Suite 400, Reston Plaz, Reston, VA, 20191
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
Peter Neumann
Principal Staff Member
(540) 552-5102
Business Contact:
Marc Chazan
Director of Contracts
(703) 788-7759
Research Institution:
Pamela R Righter
P.O. Box 30
State College, PA, 16804
(814) 863-3991
Nonprofit college or university
The performance of active Navy sonar systems in littoral environments is often limited by strong reverberation, typically from the seabed. Reverberation can be subdivided into discrete clutter events and diffuse bottom reverberation, with discrete clutterevents being the most serious problem for the utilization of current and future sonar systems. An accurate, physics-based model for the prediction of clutter and diffuse reverberation is sorely needed in order to shape the development of new sonar conceptsand optimize the employment strategies of existing systems. This proposal meets this challenge with an approach that addresses these issues. Charles Holland (ARL/PSU) has designed and conducted innovative measurements to localize and probe the physicalmechanisms controlling seabed clutter and scattering in the littoral. Peter Neumann (PSI) leads a PSI team with experience in the configuration management of models and algorithms as Navy standards. Kevin LePage (NRL-DC) is an expert on modelingreverberation and scattering and participates in this proposal as an outside funded resource. This proposal leverages existing modeling efforts (R-SNAP and BiStaR models) with existing measurement programs (Boundary Characterization and GeoClutter) todevelop a high-fidelity, physics-based model for low to mid-frequency sonars that will accurately simulate both diffuse reverberation and discrete clutter. The anticipated benefit of the proposed project is the reduction in the development costs of newactive Navy sonar systems through the use of the proposed high-fidelity, physics-based model for both diffuse reverberation and discrete clutter. The applicable frequency of the proposed model (from below 100 Hz to 5 KHz) covers a wide range of current andproposed sonar systems. The proposed model leverages the existing, advanced knowledge of diffuse reverberation modeling with the emerging understanding of the mechanisms responsible for discrete clutter into a unified, high-fidelity model.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government