You are here

A Novel Radiation Shielding Material

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNL04AB31P
Agency Tracking Number: 034412
Amount: $70,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: B3.06
Solicitation Number: N/A
Timeline
Solicitation Year: 2003
Award Year: 2004
Award Start Date (Proposal Award Date): 2004-01-16
Award End Date (Contract End Date): 2004-07-19
Small Business Information
4914 MOORES MILL RD
HUNTSVILLE, AL 35811-1558
United States
DUNS: 799114574
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Scott O'Dell
 Principal Investigator
 (256) 851-7653
 scottodell@plasmapros.com
Business Contact
 Timothy McKechnie
Title: President
Phone: (256) 851-7653
Email: timmck@plasmapros.com
Research Institution
N/A
Abstract

In order to safely explore space, humans must be protected from radiation. There are 2 predominant sources of extraterrestrial ionizing radiation, namely, Galactic Cosmic Rays (GCR) consisting primarily of nuclei of atoms (up to Fe) and Solar Energetic Particles (SEP), which includes mainly high-energy protons. In addition, neutrons that are formed due to breakdown of the incoming radiation flux in the shielding material have to be accounted for. An innovative, castable, boron coated, polyethylene epoxy is potentially a cost-effective lightweight radiation shielding material possessing structural as well as shielding properties. During Phase I, techniques will be evaluated for coating polyethylene particles with boron to prevent sedimentation of the higher density boron in the epoxy. In addition, techniques will be developed to uniformly disperse these particles in an epoxy matrix. Radiation simulations will also be performed. From these simulations it will be determined what parameters, such as volume percent boron coated, polyethylene particles, are necessary for this material to provide optimal protection to humans and electronics in a deep space environment. During Phase II, the fabrication techniques will be optimized. Samples will be produced for extensive mechanical properties testing as well as for radiation testing.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government