Tungsten Alloy Divertor Concept with Helium Jet Cooling

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$750,000.00
Award Year:
2007
Program:
SBIR
Phase:
Phase II
Contract:
DE-FG02-06ER84446
Award Id:
81079
Agency Tracking Number:
81315S06-I
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
4914 Moores Mill Road, Huntsville, AL, 35811
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
799114574
Principal Investigator:
JohnO'Dell
Mr
(256) 851-7653
scottodell@plasmapros.com
Business Contact:
AngelaHattaway
Ms
(256) 851-7653
ahattaway@plasmapros.com
Research Institute:
n/a
Abstract
Helium-cooled, refractory metal heat sinks are being considered for the divertor sections of several fusion energy reactors. One type of helium cooling, jet impingement, has shown promise for high heat flux applications. However, because of the small size of the units (1.5-2 cm), a large number of these heat sinks would be needed for the divertor section of a reactor. Recently, a mid-size helium-jet-cooled configuration, with good heat flux accommodation potential, has been designed. The system is comprised of concentric tungsten tubes in a ¿T-shaped¿ configuration. This project will advanced net-shape refractory-metal forming techniques to enable the fabrication of this improved helium cooled tungsten divertor concept. In Phase I, impingement-cooled and straight-bore tungsten heat sinks were fabricated and tested. Preliminary high-heat-flux testing demonstrated that a tungsten heat sink with helium-impingement cooling provided ~20% greater reduction in average surface temperature compared to a straight-bore tungsten heat sink under the same heat flux. In Phase II, a mid-size helium-impingement-cooled divertor configuration will be developed and fabricated to withstand heat fluxes up to 10 MW/m2. To determine the Phase II design, initial studies will be conducted to determine trade-offs between ease of fabrication, thermal induced stresses/strains, and thermal performance. Manufacturing techniques will be optimized and improvements will be thoroughly characterized using metallographic and material properties testing techniques. Commercial Applications and Other Benefits as described by the awardee: Compared to other helium cooling techniques, such as the porous heat exchanger configuration, the jet-impingement cooling method could significantly simplify the fabrication of helium cooled refractory metal heat sinks and improve long term reliability and performance. In fusion reactors, the technology would allow higher operating temperatures, which could result in increased power conversion efficiency. The techniques developed to produce the helium-jet-cooled tungsten divertor also should be applicable to such components as x-ray targets, crucibles for semiconductor crystal growth, rocket hardware, and wear and thermal protection coatings.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government