LC-based Nitric Oxide Breath Monitor for Asthma Management

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43HL095167-01
Agency Tracking Number: HL095167
Amount: $399,939.00
Phase: Phase I
Program: SBIR
Awards Year: 2009
Solicitation Year: 2009
Solicitation Topic Code: N/A
Solicitation Number: PHS2009-2
Small Business Information
PLATYPUS TECHNOLOGIES, LLC
5520 Nobel Drive, Suite 100, MADISON, WI, 53711
DUNS: 118040364
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 AVIJIT SEN
 (608) 237-1270
 ASEN@PLATYPUSTECH.COM
Business Contact
 RENEE HERBER
Phone: (608) 237-1270
Email: rherber@platypustech.com
Research Institution
N/A
Abstract
DESCRIPTION (provided by applicant): The goal of this project is to develop a liquid crystal-based sensor that can detect and measure nitric oxide in exhaled breath. The sensor technology is based on a broadly applicable detection platform that exploits the sensitivity of liquid crystals (LCs) to the nanoscopic changes in the structure of surfaces. Many attributes of this LC technology suggest that it offers exciting potential for clinical applications. It can be used to fabricate low cost, highly specific sensor elements that analyze chemicals in real time (response in ~ 10 seconds), are highly sensitive (can detect 1 ppb or less in vapor phase), provide a wide dynamic range (4 orders of magnitude), offer format flexibility, and are easily customized to detect selected compounds. Because the technology does not require expensive or complex instrumentation, or highly skilled personnel to operate the equipment, it is ideally suited as a cost-effective and reliable approach for breath monitoring. The outcome of this Phase I proposal will be a sensor element that can detect and measure ppb levels of exhaled nitric oxide. The LC-based sensor elements are small (lt1cm in size) and will be integrated with electronics to analyze and report analyte concentrations. Our intended product will display a readout of the collected data to the user. Such a product will enable self- monitoring by asthmatics and play a key role in disease management. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop a liquid crystal-based sensor that can detect and measure nitric oxide in exhaled breath. The sensor technology is based on a broadly applicable detection platform that exploits the sensitivity of liquid crystals (LCs) to the nanoscopic changes in the structure of surfaces. Many attributes of this LC technology suggest that it offers exciting potential for clinical applications. It can be used to fabricate low cost, highly specific sensor elements that analyze chemicals in real time (response in ~ 10 seconds), are highly sensitive (can detect 1 ppb or less in vapor phase), provide a wide dynamic range (4 orders of magnitude), offer format flexibility, and are easily customized to detect selected compounds. Because the technology does not require expensive or complex instrumentation, or highly skilled personnel to operate the equipment, it is ideally suited as a cost-effective and reliable approach for breath monitoring. The outcome of this Phase I proposal will be a sensor element that can detect and measure ppb levels of exhaled nitric oxide. The LC-based sensor elements are small (lt1cm in size) and will be integrated with electronics to analyze and report analyte concentrations. Our intended product will display a readout of the collected data to the user. Such a product will enable self- monitoring by asthmatics and play a key role in disease management.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government