Bioswellable Absorbable Monofilament Sutures

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43GM079808-01
Agency Tracking Number: GM079808
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2007
Solicitation Year: 2007
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
POLY-MED, INC., 6309 HWY 187, ANDERSON, SC, 29625
DUNS: 839420742
HUBZone Owned: N
Woman Owned: Y
Socially and Economically Disadvantaged: Y
Principal Investigator
 (864) 646-8544
Business Contact
Phone: (864) 646-8544
Research Institution
DESCRIPTION (provided by applicant): Most mechanical ligations of living tissues using surgical sutures require a combination of a thread and needle combination. In most cases, the needle diameter far exceeds that of the suture, which can result in leakage of bodily fluids, including blood, through needle-created holes about implanted suture thread. Depending on the surgical site, this can lead to bleeding and infection. A few attempts have been made in earlier decades to minimize needle hole leakage without a clinically optimum solution. This prompted the pursuit of the proposed study to explore development and evaluation of a first generation of swellable sutures with a focus on the absorbable monofilament type and those for use in laparoscopy and microsurgery. Accordingly, Phase I objective is synthesis of absorbable amphiphilic polyether esters and their evaluation for use as bioswellable absorbable sutures. And Phase I plans entail (1) synthesis and characterization of several absorbable crystalline polyether esters; (2) conversion of selected copolymers to monofilaments under established conditions to provide optimum mechanical properties; (3) in vitro evaluation of non-sterile monofilaments for basic suture properties; (4) selection of candidate monofilaments for fast and delayed absorption profiles and completion of their in vivo breaking strength retention; (5) selection of two compositions to produce bioswellable, compliant monofilament sutures having fast and delayed absorption profiles for Phase II study. This entails polymer/suture development and scale-up studies and initiation of preclinical studies. Development of novel bioswellable surgical sutures will help minimize or eliminate suture- and needle-hole bleeding/leakage and associated blood loss and infection during and after surgery.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government