SBIR Phase I: High Energy Density Film Capacitators

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$100,000.00
Award Year:
2009
Program:
SBIR
Phase:
Phase I
Contract:
0839428
Agency Tracking Number:
0839428
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
POWDERMET INC
24112 ROCKWELL DR, EUCLID, OH, 44117
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
175863463
Principal Investigator:
Matthew Johnston
ScD
(216) 404-0053
mjohnston@powdermetinc.com
Business Contact:
Matthew Johnston
ScD
(216) 404-0053
mjohnston@powdermetinc.com
Research Institution:
n/a
Abstract
This SBIR Phase I research project would demonstrate proof of principle for the production of ultra capacitors with energy densities competitive with lithium ion batteries, but that can be charged in seconds to minutes as opposed to hours or days. These ultra capacitors are based on the development of new, super-high permittivity (30-100,000 epsilon) nanostructured titanate particles that allow for high charge storage along with high dielectric breakdown strength that are arranged in percolative networks in a very low cost polymeric film. More specifically, the project goal will be to demonstrate multilayer capacitor prototypes having dielectric breakdown strength above 5000 V/mil and effective permittivity above 20,000 (goal is 30,000) at room temperature, and demonstrate the feasibility of fabricating these formulations into capacitor devices using an innovative low cost metallized film production technology. The successful development of high energy ultra capacitors having energy storage densities above 150 J/cc has the potential to revolutionize energy storage and power conversion technologies for backup power supplies, as well as plug-in and hybrid vehicles by greatly reducing the size and cost of energy storage systems. Competing products are flywheel storage, advanced battery chemistries, and electrolytic capacitors, which are all substantially more expensive and have lower performance. The primary current market for film-foil super-capacitors is high peak power electrical applications and includes pulse power supplies (lasers and flash lamps), defibrillators, and high rep rate applications.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government