High Performance Avalanche Photodiodes for Photon Counting at 1064 nm

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNG06LA04C
Agency Tracking Number: 053491
Amount: $69,528.00
Phase: Phase I
Program: SBIR
Awards Year: 2006
Solicitation Year: 2005
Solicitation Topic Code: S1.03
Solicitation Number: N/A
Small Business Information
2555 Route 130 South, Suite 1, Cranbury, NJ, 08512-3509
DUNS: 170161595
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Mark Itzler
 Principal Investigator
 (609) 495-2551
Business Contact
 Mark Itzler
Title: Business Official
Phone: (609) 495-2551
Email: mitzler@princetonlightwave.com
Research Institution
The need for higher performance fiber optic telecommunications receivers has provided the impetus for substantial progress during the last decade in the understanding and performance of InP-based linear mode avalanche photodiodes (APDs) for the wavelength range from 1.0 to 1.7 um. However, these advances have not been paralleled in the performance and availability of single photon avalanche diodes (SPADs) based on similar design and materials platforms. Moreover, the vast majority of the activity in this field has been focused on optimizing devices for telecommunications wavelengths in the vicinity of 1550 nm, and there has been very little work on devices for use at 1064 nm. For this SBIR program, we propose to apply innovative design concepts for the development of high performance SPADs optimized for 1064 nm applications. In particular, we will implement a novel bandgap engineering approach to tailor the SPAD avalanche gain properties to realize higher single photon detection efficiency while maintaining the very low dark count rates that are made possible by optimizing the absorption region design for the detection of 1064 nm photons. We will also apply design concepts that we have innovated during the course of developing state-of-the-art 1550 nm SPADs that involve optimization of the device electric profile for photon counting as well as epitaxial layer compositions. These efforts will culminate in 1064 nm large area detectors (with active area diameters up to 500 um) that demonstrate feasibility in meeting SPAD performance targets including 50% detection efficiency, bandwidth of 500 MHz, saturation levels of 50 Mcounts/s, and non-gated operation.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government