High Performance Avalanche Photodiodes for Photon Counting at 1064 nm

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$69,528.00
Award Year:
2006
Program:
SBIR
Phase:
Phase I
Contract:
NNG06LA04C
Award Id:
77812
Agency Tracking Number:
053491
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
2555 Route 130 South, Suite 1, Cranbury, NJ, 08512
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
170161595
Principal Investigator:
MarkItzler
Principal Investigator
(609) 495-2551
mitzler@princetonlightwave.com
Business Contact:
MarkItzler
Business Official
(609) 495-2551
mitzler@princetonlightwave.com
Research Institute:
n/a
Abstract
The need for higher performance fiber optic telecommunications receivers has provided the impetus for substantial progress during the last decade in the understanding and performance of InP-based linear mode avalanche photodiodes (APDs) for the wavelength range from 1.0 to 1.7 um. However, these advances have not been paralleled in the performance and availability of single photon avalanche diodes (SPADs) based on similar design and materials platforms. Moreover, the vast majority of the activity in this field has been focused on optimizing devices for telecommunications wavelengths in the vicinity of 1550 nm, and there has been very little work on devices for use at 1064 nm. For this SBIR program, we propose to apply innovative design concepts for the development of high performance SPADs optimized for 1064 nm applications. In particular, we will implement a novel bandgap engineering approach to tailor the SPAD avalanche gain properties to realize higher single photon detection efficiency while maintaining the very low dark count rates that are made possible by optimizing the absorption region design for the detection of 1064 nm photons. We will also apply design concepts that we have innovated during the course of developing state-of-the-art 1550 nm SPADs that involve optimization of the device electric profile for photon counting as well as epitaxial layer compositions. These efforts will culminate in 1064 nm large area detectors (with active area diameters up to 500

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government