Development of High-Fidelity Modeling Tools to Predict Radiative Signatures from Hypervelocity Impact Flash Events

Award Information
Agency: Department of Defense
Branch: Missile Defense Agency
Contract: HQ0006-07-C-7758
Agency Tracking Number: B063-047-0144
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2007
Solicitation Year: 2006
Solicitation Topic Code: MDA06-047
Solicitation Number: 2006.3
Small Business Information
455 Science Drive, Suite 140, Madison, WI, 53711
DUNS: 024968708
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Joseph MacFarlane
 (608) 280-9182
Business Contact
 Joseph MacFarlane
Title: President
Phone: (608) 280-9182
Research Institution
The objective of this proposal is to develop and validate first-principles modeling tools that will significantly advance the use of spectroscopic techniques for identifying materials present in hypervelocity impact events. Impact flash spectroscopy (IFS) has the potential to identify the presence of special nuclear materials (SNM) during the impact flash phase of hypervelocity interceptor-missile collisions. Utilization of IFS as a reliable approach for missile defense engagement analysis requires a well-developed predictive capability for the evolution of the gas and particulate environment created during the impact. This can be accomplished with the use of well-tested and benchmarked codes that simulate both the hydrodynamic breakup of the target and interceptor debris and the spectral emission originating during the impact flash phase. During Phase I, we propose to utilize data obtained in laboratory impact flash experiments to: develop an understanding of the spectral radiation output, and the physical conditions of the gas/particulates generated in the experiments; and assess the reliability of state-of-the-art shock-physics and spectral codes in simulating impact flash emission. We will identify new modeling techniques needed for advancing IFS simulation capabilities, and, during Phase II, develop, upgrade and validate enhanced modeling tools to support the accurate simulation of hypervelocity engagements.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government