Apodized Occulting and Pupil Masks for Imaging Coronagraphs

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$98,178.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
NNC07QA77P
Award Id:
83832
Agency Tracking Number:
066077
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
353 Christian Street, Oxford, CT, 06478
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
949115208
Principal Investigator:
Jeanne Lazo-Wasem
Principal Investigator
(203) 267-3154
jlazo-wasem@rugate.com
Business Contact:
Jeanne Lazo-Wasem
President
(203) 267-3154
jlazo-wasem@rugate.com
Research Institution:
n/a
Abstract
The technical challenge of imaging planets in other star systems is resolving these dim objects in the close vicinity of a bright star. This challenge requires the suppression of direct and scattered light from the star without attenuating or distorting the planet's image. We will develop and demonstrate high performance apodized occulting and pupil masks using a metal/metal oxide film blended to have an effective refractive index of 1.0. These masks provide for high optical density (OD) and high spatial thickness gradients with out introducing variations in phase or optical thickness. These films can be used for apodized occulting masks as well as pupil masks and baffles. An imaging coronagraph is an astronomical instrument used to study dim objects such as brown dwarfs or planets that are in the vicinity of very bright objects such a star. A critical component of the coronagraph is an apodized occulting mask. This mask is a high quality optical component which has a point of high optical density that can be used to block the light from the star without distorting or occulting the image of objects in close proximity to the star. The occulting spot must have sufficient optical density to reduce the intensity of the bright star to at least that of that of the dim object. the image, the optical density must be radially apodized from high OD at the center to very low OD with in 1 mm or so and in a controlled manner. Furthermore, the occulting spot should not induce a phase change or optical path difference for rays passing through different parts of the occulting spot. The proposed solution is to deposit films with a metal/metal oxide blend such that the effective index of the blended film is 1.0 and matches the refractive index of the entrance media. By matching the refractive index of the film and air/vacuum, the optical path of rays passing through the variable thickness of the film are the same length.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government