Photonic Crystal Chip-scale Optical Networks

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA9550-04-C-0022
Agency Tracking Number: F033-0206
Amount: $99,866.00
Phase: Phase I
Program: STTR
Awards Year: 2004
Solicitation Year: 2003
Solicitation Topic Code: AF03T021
Solicitation Number: N/A
Small Business Information
RSOFT DESIGN GROUP
200 Executive Boulevard, Ossining, NY, 10562
DUNS: 621991322
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Michael Steel
 Senior Research Scientist
 (408) 856-9360
 mike@rsoftinc.com
Business Contact
 Zhengyu Huang
Title: Director, Device Applications
Phone: (914) 923-2164
Email: zhengyu@rsoftinc.com
Research Institution
 COLUMBIA UNIV.
 Richard M Osgood
 Department of Applied Physics, 500 W. 120th St. Rm 1322
New York, NY, 10027
 (212) 854-4462
 Nonprofit college or university
Abstract
This proposal aims to spur the development of the next-generation of photonic crystal (PC) design tools. While current tools can model individual PC devices, they will prove insufficient to deal with the far-increased complexity of intregrated on-chip PC networks. There is a need for tools to improve both in their raw power and ability to handle very large problems robustly, but also to treat complex PC structures in a more intelligent and automated fashion. We propose to create several significant enhancements to RSoft's current tool suite. We will implement a generic engine capable of driving optimization projects for all RSoft device tools. The current capabilities for parallel computing will be extended to support new features such as complex gain modeling for active devices and better exploit naturally-parallel problems. Most importantly, we will undertake the design of a new circuit-level tool to enable hierarchical modeling of very complex circuits. This tool will allow different components to be modeled with different numerical tools and to be connected at a high level using S-matrix representations to support feedback and bi-directionality. The research and development effort in this proposal will create commercial design and simulation software for devices and system-on-chip base on photonic crystals. These softwares will provide efficient, accurate and vital numerical modeling of manufacturable/fabricated PBG devices and systems, thereby reducing design cycle and experiment costs and increasing success rates. The advantages of these softwares include flexible and powerful CAD interface, advanced and optimized algorithms and parallel and distributed computing capabilities. More importantly, the circuit level design tool, which will be developed in this proposal, will address the current design bottleneck for system-on-chip based on photonic crystals. All the above benefits will be critical for designers and researchers to develop commercially-worthy devices and systems based on photonic crystals.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government