Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: N/A
Agency Tracking Number: 2R44CA079364-02
Amount: $0.00
Phase: Phase I
Program: SBIR
Awards Year: 2001
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 () -
Business Contact
Phone: (617) 547-1122
Research Institution
DESCRIPTION (Provided by Applicant): High dose chemotherapy is now a commonly used approach for treatment of hematologic and other cancers, but causes severe myelosuppression requiring progenitor cell infusions. Purging cancer cells from infusions, while maintaining progenitor cells, is an important goal in optimizing the curative potential of this technology. Current purging techniques have limited efficiency and demand intensive time, technology and cost. We have demonstrated a new technology that selectively kills larger cells (including tumor cells) while preserving or enriching hematopoietic progenitor cells, and does so rapidly, profoundly and inexpensively. In phase II, we will apply this technology to a relevant hematologic cancer model (multiple myeloma). Process parameters will be refined to achieve complete tumor purging and progenitor cell preservation/enrichment from tumor-seeded blood or cord blood cells. Sensitive and accurate cell enumeration will be achieved through flow cytometry, tumor regrowth assays, real-time PCR, progenitor cell quieseence/pluripotency assays, and in vivo hematopoietic reconstitution and malignancy assessment in NOD/SCIDt,B2m about mice. We will then apply refined parameters and assessment techniques to clinical volumes of bone marrow cells from myeloma patients, utilizing an optimized, clinical-scale flowing process apparatus. We anticipate the Phase III effort will involve Phase II clinical trials supported by a major biomedical partner. PROPOSED COMMERCIAL APPLICATION: We expect PEF cell-size specific inactivation technology to be an effective transplant tissue purging strategy for post-intensive-therapy patient support. With the propose refinements and assessments, it should provide an approach for rapid, cost-effective, high purity isolation of stem cells from progenitor cell preparations, which will open research, clinical, gene therapy and stem cell banking markets. Our market analysis indicates that the total revenues for this technology may eventually reach $100 million per year.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government