SBIR/STTR Phase II: Nonintrusive Species Specific Velocimeter

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: N/A
Agency Tracking Number: 0215930
Amount: $499,158.00
Phase: Phase II
Program: SBIR
Awards Year: 2002
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
15 Ward Street, Somerville, MA, 02143
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Allen Flusberg
 (617) 547-4104
Business Contact
Phone: () -
Research Institution
This Small Business Innovation Research Phase II project will develop a passive, nonintrusive species-specific velocimeter (SSV) that simultaneously measures spatially resolved velocities of multiple species in a flame, sorting the information by species and spatial scale size. The SSV will be geared to spatially resolve the mixing and chemical dynamics occurring within flames, and to track these effects in real time. No instruments are available that can make such measurements passively and non-invasively in a com-pact geometry. The SSV will play a critical role in a novel deposition process, combustion chemical vapor deposition (CCVD). CCVD is a continuous open-air deposition process that is targeting a wide spectrum of thin-film-coating markets, including electronics, glass, anti-corrosives, superconductors, catalytics, polymers, and nanopowders. Phase 1 demonstrated feasibility by measuring spatially resolved, species-specific CCVD flame velocities on different spatial scales. Phase 2 will be a proof-of-principal program to (1) construct an engineering prototype, (2) demonstrate the correlation between SSV data and bottom-line CCVD film properties, and (3) design an SSV-based CCVD controller that can be fabricated economically and commercialized in a privately funded This technology will facilitate smart deposition that streamlines the reliability of CCVD. Incorporated into a CCVD system, the SSV will become the central element of a feedback control module that maintains the consistency of the flame and maximizes deposition efficiency. The commercial market for this technology generates about $50 million annually. This project addresses the interest in advanced control techniques for manufacturing. It supports the development of improved and more reliable coatings that will enhance technology and lower the cost of many common products, e.g. electronic memory devices in computers, appliances, and automobiles.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government