Novel Statistical Estimation Algorithms and Tools for Binomial and Multinomial Longitudinal Data

Award Information
Agency: Department of Defense
Branch: Army
Contract: DAMD17-02-C-0120
Agency Tracking Number: 44328
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2002
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
500 West Cummings Park, Suite 3000, Woburn, MA, 01801
DUNS: 859244204
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Bo Ling
 Research Engineer
 (781) 933-5355
 ling@ssci.com
Business Contact
 Raman Mehra
Title: President/CEO
Phone: (781) 933-5355
Email: rkm@ssci.com
Research Institution
N/A
Abstract
Not Available "Statistical modeling and analysis for longitudinal data are important in many applications ranging across behavioral and medical sciences. Statistical theory based on continuous variables and Gaussian distributional assumptions is well developed, andappropriate tools such as NLME (Nonlinear and Linear Mixed Effects: see Pinheiros and Bates (2001)) are available. Corresponding algorithms and software for discrete binomial and multinomial data are much less well developed, and pose nontrivial choicesand challenges. We propose to develop methods based on probit assumptions that essentially say that the data arises from discretizing hidden continuous variables, whence "missing value" methods such as EM algorithms and MCMC data augmentation Bayesianmethods can be devised that can build on the available software for the continuous case. We believe R software to accomplish this is a feasible project that will significantly extend what is currently available and will be found useful by many researchers.The proposed new statistical algorithms and tools can benefit many public and private organizations, including the federal government, and academic and other nongovernmenal research institutions such as pharmaceutical companies, where longitudinal andother forms of hierarchical data are common. The published theoretical results will benefit the statistics community in general. A software package written in R will reach many users, and, eventually, the algorithms can be implemented in other collectionssuch as MATLAB and SAS, thus multiplying the effect of the initiative and increasing the payoff from our small business enterprise resources to improve the effectiveness and validity of data analysis in many fields."

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government