Distributed Formation State Estimation Algorithms Under Resource and Multi-Tasking Constraints

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNC07QA61P
Agency Tracking Number: 066983
Amount: $99,996.00
Phase: Phase I
Program: SBIR
Awards Year: 2007
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
Scientific Systems Company, Inc.
500 West Cummings Park, Suite 3000, Woburn, MA, 01801
DUNS: 859244204
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Sanjeev Seereeram
 Principal Investigator
 (781) 933-5355
 sanjeev@ssci.com
Business Contact
 Raman Mehra
Title: Business Official
Phone: (781) 933-5355
Email: rkm@ssci.com
Research Institution
N/A
Abstract
Recent work has developed a number of architectures and algorithms for accurately estimating spacecraft and formation states. The estimation accuracy achievable during spacecraft operation depends not only on the algorithm, but also on its implementation. Typically, the algorithm will be implemented on a real-time multi-tasking processor that allocates on-board computational resources to multiple tasks and functions according to some scheduling policy. The processor's task scheduler may induce delays that were unaccounted for at design-time and may sometimes preempt estimation tasks in favor of other tasks. Hence, estimation accuracy and in general the performance of any embedded algorithm can be significantly lower than expected during execution. The goal of this project is to develop distributed spacecraft state estimation algorithms that account for real-time multi-tasking processor and other implementation related resource constraints. We bring together modeling techniques from multi-class queuing, well-known Kalman filtering techniques and recent advances in embedded systems to develop an innovative co-design framework for the design of embedded state estimation algorithms and software. During the proposed effort, we will design, implement and evaluate estimation algorithms on a network of real-time processors or hardware emulations of processors on-board formation spacecraft.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government