Advanced Lagrangian Techniques for Complex Problem Analysis (Ground-Fixed Target Vulnerability Technology)

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: N/A
Agency Tracking Number: 41029
Amount: $99,001.00
Phase: Phase I
Program: SBIR
Awards Year: 1998
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
SIMULATION TECHNOLOGIES, INC.
4210 Beulah Drive, La Canada, CA, 91011
DUNS: N/A
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Dr. Eduardo Repetto
 (626) 457-1674
Business Contact
Phone: () -
Research Institution
N/A
Abstract
Understanding the interaction between munition and target is necessary for the optimization of the performance of both the target and the penetrator. Commercially available technoUnderstanding the interaction between munition and target is necessary for the optimization of the performance of both the target and the penetrator. Commercially available technology for the numerical simulation of ballistic penetration and shaped charges falls short of being able to reliably simulate damage to armors, runways, surface and buried concrete bunkers and other hardened underground targets. Our Lagrangian finite element based approach, with continuous adaptive remeshing, gives us the possibility of accurately simulating problems involving large deformations and fragmentation. Thermomechancial coupled models of models of brittle and ductile materials, cohesive material interfaces for layered material and contact algorithms able to solve complex multi-body contact situations, e.g. in fragmentation, are key pieced in our simulation package for impact penetration. logy for the numerical simulation of ballistic penetration and shaped charges falls short of being able to reliably simulate damage to armors, runways, surface and buried concrete bunkers and other hardened underground targets. Our Lagrangian finite element based approach, with continuous adaptive remeshing, gives us the possibility of accurately simulating problems involving large deformations and fragmentation. Thermomechancial coupled models of models of brittle and ductile materials, cohesive material interfaces for layered material and contact algorithms able to solve complex multi-body contact situations, e.g. in fragmentation, are key pieced in our simulation package for impact penetration.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government