Femtosecond Temporal Pulse Shaping and Spectroscopy for Drilling and Inspecting Straight and Shaped Cooling Holes

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-09-M-2971
Agency Tracking Number: F083-101-2176
Amount: $99,717.00
Phase: Phase I
Program: SBIR
Awards Year: 2009
Solicitation Year: 2008
Solicitation Topic Code: AF083-101
Solicitation Number: 2008.3
Small Business Information
2513 Pierce Ave., Ames, IA, 50010
DUNS: 782766831
HUBZone Owned: N
Woman Owned: Y
Socially and Economically Disadvantaged: N
Principal Investigator
 Sivaram Gogineni
 (937) 266-9570
Business Contact
 Sivaram Gogineni
Title: Technical Lead
Phone: (937) 266-9570
Email: mohammed.mawid@engineeringrac.com
Research Institution
Laser micromachining is being widely used in every industry, including aerospace, automobile, microelectronics and bio-technology. The recent advent of commercial turn-key, high power femtosecond lasers has prompted a great amount of interest in using femtosecond lasers for machining. It has been demonstrated that the femtosecond laser has potential for achieving high precision owing to its extremely confined heat-affected zone. The objective of the proposed research is to develop a novel femtosecond laser micromachining technology based on temporally-shaped femtosecond pulses for DoD and other applications, including drilling shaped film-cooling holes in turbine blades. In these femtosecond pulses, the temporal shape and energy of each pulse, and the pulse-to-pulse separation time are all designed and adjusted at a time scale from femtosecond to nanosecond to overcome common problems associated with laser machining and maximize the machining speed. We will also implement diagnostic techniques to provide a feedback for process monitoring and laser parameter control. This will be based on laser-plasma emission for identifying materials and machining rates. In this project, we will focus on optimizing the pulse shapes for machining of film-cooling holes in turbine blades. However, the technique to be developed is generally applicable for machining a wide variety of other materials. BENEFIT: The proposed technology will have large impact on DoD applications such as drilling shaped film-cooling holes in turbine blades and other areas require high precision micro-machining. The proposed technology will also have commercial applications where laser diagnostics and associated hardware and software are extensivey used (e.g. academic and research institutions).

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government