Spatially and Temporally Resolved Temperature and Species Concentration Measurements in High-Pressure Combustors using fs-CARS

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-09-C-2918
Agency Tracking Number: F073-059-1004
Amount: $749,774.00
Phase: Phase II
Program: SBIR
Awards Year: 2009
Solicitation Year: 2007
Solicitation Topic Code: AF073-059
Solicitation Number: 2007.3
Small Business Information
2513 Pierce Ave., Ames, IA, 50010
DUNS: 782766831
HUBZone Owned: N
Woman Owned: Y
Socially and Economically Disadvantaged: N
Principal Investigator
 Sukesh Roy
 Principal Investigator
 (937) 902-6546
Business Contact
 Sivaram Gogineni
Title: President
Phone: (937) 266-9570
Research Institution
The objectives of the proposed Phase-II research effort is (1) to develop single-shot femtosecond (fs) laser-based coherent anti-Stokes Raman scattering (CARS) spectroscopy for providing quantitative high-speed (1-10 kHz) temperature and species concentration measurements in unsteady reacting flows, (2) to explore the use of a single-wavelength, broadband fs laser-beam for CARS spectroscopy thereby eliminating the problems associated with crossing multiple laser beams in turbulent media, and (3) to investigate the group velocity dispersion of the fs laser pulse as a function of temperature and pressure through multiple gas-phase media that are relevant to combustion processes.  The initial frequency-spread dephasing rate of the Raman coherence induced by the ultrafast (~85 fs) Stokes and pump beams will be used to measure gas-phase temperature for high-pressure combustion.  Single-shot CARS thermometry will be performed by obtaining time-resolved CARS spectra from a chirped probe pulse.  A theoretical model will be developed to interpret and extract high-speed, single-shot temperature from experimental measurements.  The use of shaped ultrashort pulses for selective detection of combustion species will be also performed during the Phase-II research activities.  The Phase-II research efforts will identify the technologies for successfully transitioning this technique from laboratory to high-pressure gas-turbine test rigs and augmentors at Wright-Patterson Air Force Base (WPAFB) and similar research facilities in industry and academia. BENEFIT: The proposed research effort will provide new diagnostic capabilities that will enable the Air Force and aircraft engine manufacturers to address the challenges associated with combustion instability. These tools are critical for increasing the acceptance rate and long-term health of engines for the war fighter.  The proposed research will also help to validate numerical models of instability phenomena affecting modern high-pressure combustor and augmentor performance, and lead to improved control strategies ensuring rapid and stable combustion during critical phases of the flight envelope.  Such experimental and numerical tools will also prove extremely valuable in the analysis of military and commercial gas-turbine combustors, as well as internal combustion engines and stationary power generation systems.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government