Spatially and Temporally Resolved Temperature and Species Concentration Measurements in High-Pressure Combustors using fs-CARS

Award Information
Agency:
Department of Defense
Branch
Air Force
Amount:
$749,774.00
Award Year:
2009
Program:
SBIR
Phase:
Phase II
Contract:
FA8650-09-C-2918
Award Id:
86630
Agency Tracking Number:
F073-059-1004
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
2513 Pierce Ave., Ames, IA, 50010
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
782766831
Principal Investigator:
SukeshRoy
Principal Investigator
(937) 902-6546
contact@spectralenergies.com
Business Contact:
SivaramGogineni
President
(937) 266-9570
contact@spectralenergies.com
Research Institute:
n/a
Abstract
The objectives of the proposed Phase-II research effort is (1) to develop single-shot femtosecond (fs) laser-based coherent anti-Stokes Raman scattering (CARS) spectroscopy for providing quantitative high-speed (1-10 kHz) temperature and species concentration measurements in unsteady reacting flows, (2) to explore the use of a single-wavelength, broadband fs laser-beam for CARS spectroscopy thereby eliminating the problems associated with crossing multiple laser beams in turbulent media, and (3) to investigate the group velocity dispersion of the fs laser pulse as a function of temperature and pressure through multiple gas-phase media that are relevant to combustion processes. The initial frequency-spread dephasing rate of the Raman coherence induced by the ultrafast (~85 fs) Stokes and pump beams will be used to measure gas-phase temperature for high-pressure combustion. Single-shot CARS thermometry will be performed by obtaining time-resolved CARS spectra from a chirped probe pulse. A theoretical model will be developed to interpret and extract high-speed, single-shot temperature from experimental measurements. The use of shaped ultrashort pulses for selective detection of combustion species will be also performed during the Phase-II research activities. The Phase-II research efforts will identify the technologies for successfully transitioning this technique from laboratory to high-pressure gas-turbine test rigs and augmentors at Wright-Patterson Air Force Base (WPAFB) and similar research facilities in industry and academia. BENEFIT: The proposed research effort will provide new diagnostic capabilities that will enable the Air Force and aircraft engine manufacturers to address the challenges associated with combustion instability. These tools are critical for increasing the acceptance rate and long-term health of engines for the war fighter. The proposed research will also help to validate numerical models of instability phenomena affecting modern high-pressure combustor and augmentor performance, and lead to improved control strategies ensuring rapid and stable combustion during critical phases of the flight envelope. Such experimental and numerical tools will also prove extremely valuable in the analysis of military and commercial gas-turbine combustors, as well as internal combustion engines and stationary power generation systems.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government