SBIR Phase I: High Efficiency, Wide-Bandgap Photocathodes for Solar-Blind UV Photon Counting and Imaging

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 0539593
Agency Tracking Number: 0539593
Amount: $99,997.00
Phase: Phase I
Program: SBIR
Awards Year: 2006
Solicitation Year: 2005
Solicitation Topic Code: EL
Solicitation Number: NSF 05-557
Small Business Information
SVT Associates Inc
7620 Executive Drive, Eden Prairie, MN, 55344
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: Y
Principal Investigator
 Amir Dabiran
 (952) 934-2100
Business Contact
 Brian Hertog
Title: Mr
Phone: (952) 934-2100
Research Institution
This Small Business Innovation Research (SBIR) Phase I project is directed toward the development of innovative high-efficiency UV photocathodes based on the wide bandgap III-nitride semiconductors. Photocathodes based on AlxGa1-xN alloy with a bandgap of 3.4 to 6.2 eV (for Al composition x from 0 to 1) can fill the gap in the 150-400 nm range between alkali halide photocathodes (lambda < 200nm) and various optical photocathodes including multialkali and GaAs (lambda > 400nm). In addition to high-performance UV image sensors, these structures are considered for high-brightness electron emitters in maskless electron lithography and solid-sate lighting. This project will integrate these high-efficiency UV photodetectors with intensifiers to fabricate high resolution and high sensitivity solar-blind UV sensors for photon-counting and imaging applications. Note that the chemical and thermal stability and radiation hardness of III-nitride materials make these detectors suitable for applications in harsh environments. The requirements of future instruments pose new challenges for cathode development, particularly in the production of highly efficient and stable photocathodes. The key improvements include higher detection efficiency, better stability under radiation and surface exposure, and stronger out-of-bandpass light rejection. Detection of light in the ultraviolet (UV) range (lambda < 400 nm) has a wide range of applications, both commercial and military, particularly in those areas where the UV component of light needs to be analyzed in the presence of large visible and/or infrared (IR) backgrounds. High-quality photocathodes were grown by MBE technique, which means that they can be developed on large diameter substrates with uniform performance. Large-format UV image sensors are in great demand for space science and military application. The development of high-efficiency 'cesium-free" photocathodes in this program will result in versatile, more reliable and lower cost UV sensors for the applications mentioned above. Finally, the technology to be developed in this program can results in high-brightness electron emitters for applications in metrology and maskless electron lithography.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government