Large Area, Robust GaN-Based Photocathodes for High-Efficiency UV and Cherenkov Light Detection

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$99,942.00
Award Year:
2006
Program:
SBIR
Phase:
Phase I
Contract:
DE-FG02-06ER84506
Award Id:
80465
Agency Tracking Number:
81197S06-I
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
7620 Executive Drive, Eden Prairie, MN, 55344
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
AndrewWowchak
Dr.
(952) 934-2100
wowchak@svta.com
Business Contact:
LesliePrice
Ms.
(952) 934-2100
price@svta.com
Research Institute:
n/a
Abstract
Improved, high-sensitivity, large-area UV detectors are sought for many photon-counting and imaging applications. In particular, for nuclear and high energy physics research, there is a need to extend the sensitivity of photon detectors to the blue and UV wavebands. In addition, the photocathodes must have uniform larger-area detection with lower noise and higher efficiency, better tolerance to radiation and surface contamination, stronger out-of-band light rejection, and a lower cost of production. This project will develop robust, large-area photocathodes, based on the wide-bandgap III-nitride semiconductors (GaN), for high-efficiency Cherenkov and UV light detection. The photocathodes will be incorporated on micro-channel plates (MCPs) and electron-bombardment charged coupled devices (EB-CCDs) for high-sensitivity photon counting and imaging. Phase I will address issues related to the design and fabrication of high-performance, large-area, nitride-based photocathode structures and their integration with intensifiers for UV photon-counting and imaging. In particular, Phase I will design novel nitride-based UV photocathode structures; use molecular beam epitaxy to grow large-area nitride-based UV photocathodes; fabricate, characterize, and perform lifetime testing of UV photocathodes; and integrate the UV photocathodes with suitable MCP and CCD structures. Commercial Applications And Other Benefits as described by the Applicant: In addition to applications in nuclear and high-energy physics, high-efficiency photon counting detectors should be an enabling technology for future space-borne astronomy, and many civilian and military applications. The GaN-based photocathodes also should be expected to impact the development of high-quality electron sources. More efficient electron sources would enhance the performance of polarized RF electron guns for synchrotron and free-electron lasers and contribute to developments in maskless electron lithography and semiconductor wafer metrology.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government