Electrowetting Droplet Microfluidics for Biochips

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$749,952.00
Award Year:
2004
Program:
SBIR
Phase:
Phase II
Contract:
2R44GM067469-02
Award Id:
66494
Agency Tracking Number:
GM067469
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
TANNER RESEARCH, INC., 2650 E FOOTHILL BLVD, PASADENA, CA, 91107
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
MICHAEL EMERLING
(626) 792-3000
MICHAEL.EMERLING@TANNER.COM
Business Contact:
KEVIN DINNIENE
(626) 792-3000
KEVIN.DINNIENE,@TANNER.COM
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): The increased interest in pharmaceutical, chemical, and biomedical/genetic analysis and diagnostics has led to the development of numerous micro-electromechanical systems (MEMS) based fluid handling and mixing systems. The majority of these systems is based upon either the employment of continuous-flow systems, or provide for discrete sample manipulation through the use of external, macro-scale, appliances (e.g., syringe pumps, centrifugal acceleration field, etc.). In contrast to these approaches, we propose to develop a platform to manipulate individual droplets using an electrically addressed control system. Utilizing the Electrowetting Effect, the solid-liquid surface energy will be manipulated using a microfluidic platform formed from an array of controllable electrodes. Decreases in the solid-liquid surface energy cause a corresponding decrease in the contact angle at the liquid-solid-vapor line, resulting in a pressure imbalance between the two ends of the droplet, causing the droplet to move. Tanner Research, Inc. and the Keck Graduate Institute (KGI) are proposing to develop enabling technology, utilizing electrowetting arrays, for motion control of sub microliter sized droplets. Within the Phase II effort, Tanner Research, Inc. and KGI will develop a revolutionary EW-ActiveSlide(tm) R&D platform: a complete, high-density electrowetting array and control system, capable of addressing the growing niche of investigative microfluidic research and development, through a reconfigurable, user-friendly platform. The development and automated execution of DNA hybridization studies and DNA amplification through EXPAR will be demonstrated, both in solution and with surface immobilized DNA strands. Commercial applications for the proposed electrowetting-based microfluidic research and development platform include high-integration, high-throughput, lab-on-a-chip systems for genomics, proteomics and lab automation. The EW-ActiveSlide(tm) would initially be targeted as a laboratory research tool, and will therefore be compatible with existing commercial fluorescence microscopy. Protocols developed on the platform could integrate sample preparation, aliquoting, and hybridization, developing efficient and cost effective means for screening and identifying samples. Expansion into handheld pathogen detection and identification, and to patient screening of SNPs and alleles for clinical use in estimating drug efficacy, will be pursued as a second-stage marketing effort in Phase III.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government