Simulations of Waveguide Breakdown

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$749,515.00
Award Year:
2008
Program:
SBIR
Phase:
Phase II
Contract:
DE-FG02-07ER84833
Award Id:
84269
Agency Tracking Number:
82517
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
5621 Arapahoe Avenue, Suite A, Boulder, CO, 80303
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
806486692
Principal Investigator:
Seth Veitzer
Dr
(720) 974-1848
veitzer@txcorp.com
Business Contact:
Laurence Nelson
Mr
(720) 974-1856
lnelson@txcorp.com
Research Institution:
n/a
Abstract
Future neutrino experiments will require neutrino beam intensities beyond the capabilities of today's sources. These experiments will require high-energy neutrinos from muon decay. The muons need to be cooled, and, in order to reduce costs, the number of cooling elements should minimized. However, breakdown of the accelerating cavities is expected to limit the performance of any proposed beam system. This project will help researchers use simulation to understand the breakdown of metallic structures planned for muon beam systems, enabling them to reduce the length and thereby the cost of future accelerators. It will implement new physics algorithms relevant to breakdown and add them to an existing library of routines developed to model plasma/material interactions. The project will also make existing codes easier to use for non-experts.The Phase I project successfully modeled breakdown with parameters relevant to present muon cooling systems using two well-known commercial particle-in-cell codes. It also improved the user interface to one of the codes by improving the parallel computing features, allowing users to get answers more quickly. The work demonstrated the utility of these code enhancements by successfully modeling breakdown near a micron-sized surface imperfection with applied magnetic field for conditions similar to copper cavities presently being tested by muon collider researchers. The Phase II project will extend the physics algorithms improvements and improvements to the code user interface. Commercial Applications and other Benefits as described by the awardee: Routines implemented here, such as plasma radiation effects and models of multiple ionization processes, are important to the Air Force community and to researchers developing more energy-efficient commercial lighting.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government