Improved Low-Temperature Performance of Safer, Low-Cost Lithium Iron Phosphate Cathodes for Lithium-Ion Batteries

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-05ER84260
Agency Tracking Number: 78339S05-I
Amount: $99,926.00
Phase: Phase I
Program: SBIR
Awards Year: 2005
Solicitation Year: 2006
Solicitation Topic Code: 17
Solicitation Number: DE-FG02-06ER06-09
Small Business Information
15 Acorn Park, Cambridge, MA, 02140
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Karen Thomas-Alyea
 (617) 498-5054
Business Contact
 Renee Wong
Title: Ms.
Phone: (617) 498-5655
Research Institution
78339S Electric and hybrid electric vehicles are key technologies for reducing the nation¿s dependence on imported petroleum, reducing greenhouse-gas emissions and air pollution, and conserving petrochemical feedstocks. Lithium-ion batteries, with their high energy density, show promise to improve the performance of these vehicles. Lithium iron phosphate is an attractive cathode material for lithium-ion batteries for automotive applications because of its good safety, cost, energy density, cycle life, and calendar life. In this project a three-part study will be conducted to improve the lithium diffusivity in lithium iron phosphate. Synthesis and experimental analysis will be combined with quantum mechanical calculations to identify barriers to diffusion within the crystal structure of lithium iron phosphate, and chemical modifications will be undertaken to reduce those barriers. Part one of the study will identify synthesis techniques that improve lithium diffusion through the crystal structure of the lithium iron phosphate. Part two will use quantum mechanical calculations to identify substituents to the iron site which reduce the energy barrier for lithium diffusion. Part three will synthesize and test the most promising material identified in part two. Commercial Applications and Other Benefits as described by the awardee: Because of its great advantages in cost and safety relative to presently-used metal-oxide cathode materials, an improved lithium-iron-phosphate cathode would accelerate the introduction of lithium-ion batteries for hybrid electric vehicle applications. In a field currently dominated by a few Asia-based companies, this technology may allow the U.S. to reclaim large parts of the lithium-ion battery market.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government