L1 retrotransposon-based mutagenesis for rat models of human diseases

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$1,318,986.00
Award Year:
2007
Program:
SBIR
Phase:
Phase II
Contract:
2R44RR021289-02A1
Agency Tracking Number:
RR021289
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
TRANSPOSAGEN BIOPHARMACEUTICALS, INC.
TRANSPOSAGEN BIOPHARMACEUTICALS, INC., 3624 Market St., PHILADELPHIA, PA, 19104
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
145182338
Principal Investigator:
ERIC OSTERTAG
(267) 259-1086
OSTERTAG@TRANSPOSAGENBIO.COM
Business Contact:
ERIC OSTERTAG
() -
ostertag@transposagenbio.com
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): In many aspects the rat is a better animal model than the mouse for functional genomic studies. The physiology and drug metabolism of rats and humans are more similar than that of mice and humans. The rat is larger than the mouse, making many studies easier to perform and sampling more accurate. The recent completion of the Brown Norway rat genome improves further the potential of the rat as an excellent organism for studying human diseases. Unfortunately, many genetic m anipulation techniques available in the mouse such as random mutagenesis with a gene trap (both retroviral-based and non-retroviral-based), gene knock- outs, gene knock-ins, and conditional mutations have not been possible in the rat because there is no wa y to effectively harvest and culture rat embryonic stem cells. Existing methods for producing gene deletions in rats, including cloning and chemical mutation, are inefficient and not practical. This deficiency leads to a severe bottleneck in our ability to create rat models of human disease. The product that will arise from this proposal will be rats with single gene knockouts for use as models of human disease in research and drug discovery (MutaRat Animal Models). Transposagen has developed a novel techno logy, based on human L1 retrotransposons, to generate animals with a high rate of random gene mutations in germ cells.In MutaRats, mutagenesis will occur in sperm and oocytes and some offspring will contain single gene disruptions. These offspring can be u sed to establish authentic gene knockout rat lines. In Phase I we successfully developed and characterized MutaMice, generating 22 potential founders.We have subsequently developed similar mutator founder rats (MutaRats), and in Phase II, we intend to ch aracterize these rats, and use them to generate rats with stable, singe gene deletions (gene knockout MutaRat Animal Models). Specific aim 1 isto screen existing MutaRatfounder lines to determine the line with the highest frequency of mutation. This line w ill then be bred to establish a breeding colony that can be used to obtain single gene knockout rats in Specific Aim 2. We do not intend to characterize the phenotypes of these lines, nor to establish breeding colonies of individual knockout rat linesas pa rt of this proposal, but instead to establish a sperm bank comprising sequenced insertional gene disruptions, the MutaRat Germ Line Resource. In Specific Aim 3 we will develop the MutaRat Germ Line Resourceof cryopreserved sperm from rats with single gene knockouts. We estimate that we will have a sperm bank with at least 100 different gene knockouts by the endof this project in December, 2008. This MutaRat Germ Line Resource will be the only technology capable of creating and rapidly mapping random gene kn ockouts in rats. Knockout ratswill be provided to the academic community in accordance with the NIH policy on sharing of model organisms for biomedical research and will be distributed by the National Rat Resource and Research Center. In Phase III, we will establish a distribution partnership with an existing laboratory animal company to market, establish and validate (as necessary), and distribute these lines, and others as they are developed. The innovation of this proposal is the use of a novel retrotran sposon technology to create the only system able to rapidly create and map insertional deletions in the rat and other mammals. This technology is expected to offer significant advantages in cost and speed when compared with existing mutagenesis systems ava ilable in mice, and to generate novel gene knockout models that have not previously been available in any vertebrate. Transposagen's MutaRat Animal Models will contribute to human health by providing new vertebrate models of disease for studying pathogenes is and for discovery and development of pharmaceutical compounds.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government