You are here

New Sensitive Detection of Food and Water Borne Pathogens

Award Information
Agency: Department of Health and Human Services
Branch: Food and Drug Administration
Contract: 1R43FD003058-01
Agency Tracking Number: FD003058
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Timeline
Solicitation Year: N/A
Award Year: 2005
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
TREVIGEN, INC. 8405 HELGERMAN COURT
GAITHERSBURG, MD 20877
United States
DUNS: 807864772
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 JAY GEORGE
 (301) 216-2800
 JGEORGE@TREVIGEN.COM
Business Contact
Phone: () -
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): The Centers for Disease Control and Prevention (CDC) estimate that, in the United States, there are in excess of 75 million illnesses per year, 300,000 hospitalizations, and 5,000 deaths annually that are directly attr
ibuted to food-borne pathogens [1]. E. coli O157:H7, Listeria monocytogenes, Salmonella enterica and Cryptosporidium parvum food and water borne pathogens are accountable for 1 million infections annually [1]. The CDC estimates that infections from these o
rganisms costs the country 1 billion dollars per year and 5 billion dollars total for all food and water related illness. Thus a major challenge to our public health system is the prevention of infections resulting from food- and water-borne pathogens. The
goal of this project is to develop a method for the sensitive detection and identification of infectious agents (bacteria, viruses, and protozoan parasites) associated with food and water-borne diseases. In Phase 1, we intend to develop a fluorescent, mul
tiplex, one-tube method based upon coupling SNIPase probes and rolling circle technology to selectively recognize defined target sequences that are present in the genome of specific pathogenic microorganisms of interest. In the first phase of this pro
ject we propose to: Combine SNIPase probes to Rolling Circle Amplification technology using target DNA sequences from E. coli O157:H7 as a model. Demonstrate the feasibility of combining rolling circle technology and SNIPase probes in to discriminate
between E. coli O157:H7 and other closely related strains. Show the feasibility of detecting pathogen sequences in fluorescent multiplex assay formats. Neither SNIPase probes nor rolling circle amplification technology by themselves have the necessary
sensitivity to detect low levels of DNA targets. By coupling the two reactions we anticipate that we can achieve greater than a billion fold amplification in a relatively short period of time. Additionally due to the inherent nature of the technology in th
at there is not an abundance of primers that have 3'OH ends, therefore we can eliminate low signal to ratios as a result of primer dimer formation as well background associated with the mis-priming and subsequent DNA synthesis associated with other multipl
ex technologies.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government