In-Situ Functionally Graded Oxide Matrix Composite for Gas Turbine Applications

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$99,937.00
Award Year:
2006
Program:
SBIR
Phase:
Phase I
Contract:
DE-FG02-06ER84581
Award Id:
80535
Agency Tracking Number:
80296S06-I
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
4401 Dayton-Xenia Road, Dayton, OH, 45432
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
KristinKeller
Ms
(937) 656-4072
Kristin.Keller@wpafb.af.mil
Business Contact:
FrancisWilliams
Mr.
(937) 426-6900
fwilliams@ues.com
Research Institute:
n/a
Abstract
Current ceramic matrix composites (CMCs), being evaluated for use in gas turbine engines, require a coating ¿ either an environmental barrier (EBC) or a thermal protection layer (TPS) ¿ to reach the required operating temperatures. Because these coatings are subject to degradation, eliminating the need for them would lead to improved reliability and decreased costs. This project will develop an in situ, functionally-graded oxide-matrix-composite design. In order to minimize thermal stresses, the design includes resistance to thermal and environmental attack on the hot side (a porous YAG-rich layer with low fiber volume fraction), and supports a low thermal gradient on the cold side (a denser, more alumina-rich layer with a high fiber volume fraction). Phase I will focus on concept validation through mechanical testing and exposure of test specimens. Flat panels of the in situ, functionally-graded oxide matrix composite (FGCMC) will be fabricated and subjected to mechanical testing after exposure to a thermal gradient. Portions of the panels will be evaluated after exposure in a simulated gas turbine environment and compared with data for current state-of-the-art materials. Finite element modeling of FGCMC components also will be performed. Phase II will focus on producing a component for evaluation in service. Commercial Applications and other Benefits as described by the awardee: An alternative material for use in gas turbine applications should have significant economic and environmental effects. A material that allows for higher operating temperatures would allow more efficient fuel burning and, thereby, lead to reduced fuel consumption and lower NOx emissions. The advantages afforded by these materials would benefit users of gas turbine engines (both industry and consumer) in the form of lower costs and a cleaner environment.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government