In-Situ Functionally Graded Oxide Matrix Composite for Gas Turbine Applications

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-06ER84581
Agency Tracking Number: 80296S06-I
Amount: $749,920.00
Phase: Phase II
Program: SBIR
Awards Year: 2007
Solicitation Year: 2006
Solicitation Topic Code: 28
Solicitation Number: DE-FG01-05ER05-28
Small Business Information
4401 Dayton-Xenia Road, Dayton, OH, 45432
DUNS: 074689217
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Kristin Keller
 Ms
 (937) 656-4072
 kkeller@ues.com
Business Contact
 DeeDee Donley
Title: Ms
Phone: (937) 426-6900
Email: ddonley@ues.com
Research Institution
N/A
Abstract
Currently, ceramic matrix composites (CMCs), which generally are lighter and more thermally stable than their metallic counterparts, are under evaluation for use in industrial gas turbine engines. The use of CMC could permit higher operating temperatures and reduced cooling, thereby contributing to higher fuel efficiency and lower NOx and CO emissions. State-of-the-art oxide-based composites require a thermal protection system (TPS) coating to mitigate the thermal gradients endured by the material during exposure. However, this coating can delaminate or erode, leading to exposure of the underlying composite, which contains a mullite-based fiber that is prone to attack in a moist combustion environment. This project will develop a non-silica-containing composite with a TPS that is integral and fabricated in situ. This oxide-based composite design will be resistant to environmental attack on the hot side, and will support a low thermal gradient on the cold side to minimize thermal stresses. In Phase I, a compositionally graded oxide matrix composite was exposed in a simulated combustion environment for 100 hours. The results provided a clear direction for Phase II, in which two different composite design options will be evaluated. The optimal design will be down-selected based on mechanical and thermal property data. Subscale components of the functionally graded composite material will be fabricated and tested in a subscale test facility, and then a full-scale component will be fabricated and tested. Commercial Applications and Other Benefits as described by the awardee: The functionally graded oxide matrix composite should resist degradation in the moisture-containing combustion environments that exist in high temperature gas turbine engines, providing significant economic and environmental benefits. The market for industrial gas turbine engine applications is expected to grow over the next decade, due to the closing of aging coal plants and the need for increased global power demands, particularly in Asia. The materials also would have potential use in propulsion-related applications in the industrial, military, and commercial sectors.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government