MAG-1 Targeting of GRSA on Breast Cancer

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43CA119483-01
Agency Tracking Number: CA119483
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2006
Solitcitation Year: 2006
Solitcitation Topic Code: N/A
Solitcitation Number: PHS2006-2
Small Business Information
WOOMERA THERAPEUTICS, INC.
115 ETNA ROAD SUITE D, LEBANON, NH, 03766
Duns: N/A
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 ROY PANG
 (603) 448-5511
 roy.pang@valley.net
Business Contact
 WILLIAM NORTH
Phone: (603) 650-7736
Email: WILLIAM.G.NORTH@DARTMOUTH.EDU
Research Institution
N/A
Abstract
DESCRIPTION (provided by applicant): The objective of this project is to utilize different forms of a mouse monoclonal antibody, mMAG-1, not only to direct successful imaging of breast cancer but also to develop more rational approaches to treatment. The hypothesis being tested is that Glycopeptide-Related cell-Surface Antigen (GRSA) will provide a sensitive and reliable target for the detection and effective treatment of breast cancer by mMAG-1 and related antibodies. Our data show GRSA expression is a feature common to all, or most, breast cancers and DCIS. I also shows GRSA-like antigens can be targeted in patients with antibodies, and that our MAG-1 monoAb not only recognizes GRSA in all of breast tumors but also targets GRSA in vitro. Preliminary findings also indicate MAG-1 and 90Yttrium-labeled MAG-1 can decrease growth of breast cancer xenografts in mice. Phase 1 goals are directed towards (i) performing and completing a 'proof of principle' to determine the usefulness of "technetium-labeled Fab fragments of mouse monoclonal antibody (mMAG-1) to successfully image breast cancer tumor xenografts in nu/nu mice, and; (ii) performing and completing a 'proof of principle' determine if MAG-1 (mMAG-1) or 90Yttrium-labeled mMAG-1 can kill or significantly retard the growth of brea tumor xenografts in nu/nu mice. These investigations will employ, RT-PCR, ligation, and cloning, DNA sequencing, immunohistochemistry, antibody modification, Northern and Western analysis with densiometric quantitation, RIA, tumor-directed targeting, whole-body scintigraphy for 99mTechnetium, cytofluorographic and radiometric quantitation, radioligand binding, flow cytometry, and cell and tumor growth assessments. A successful end-point of our Phase 1 studies would be the clear determination that fragments of mMAG-1 can direct radioimaging, and both unlabeled and 90Yttrium-labeled mMAG-1 can kill tumor cells or significantly curtail their growth in vivo. The proposed research is expected to lead to new and successful therapeutic approaches for managing breast cancer.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government