Carbon Nanotube Field Emission Micro-focus X-ray Tube

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$428,969.00
Award Year:
2008
Program:
SBIR
Phase:
Phase II
Contract:
2R44EB004215-02A1
Award Id:
76020
Agency Tracking Number:
EB004215
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
7020 KIT CREEK ROAD SUITE 200, PO BOX 13788, RESEARCH TRIANGLE PARK, NC, 27709
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
017945192
Principal Investigator:
() -
Business Contact:
() -
sbai@xintek.com
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): This is a revised Phase II application based on 2006 application and reviewers' comments. In this version, we made significant modifications, including: change the two rings cathode design to three rings structure, addi ng the synchronization gating control effort, and details of the processing and manufacturing of the carbon nanotube (CNT) cathodes and x-ray tubes. During this period, we achieved dramatic progress on the CNT x-ray technique, which makes us confident the success of this development. Substantial technological growth has spurred a new interest in imaging techniques, and their usage has grown considerably. High-resolution small animal imaging systems have emerged as important new tools for laboratory anim al research. X-ray imaging is widely used in diagnostic radiology, biomedical research and a wide variety of industrial applications. We propose to design and construct a portable, low cost micro-focus x-ray tube using the carbon nanotube (CNT) field emiss ion source as the cathode to overcome disadvantages of the hot electron sources in the present x-ray tubes. After Phase II, we expect to be able to develop the CNT field emision micro-focus x-ray tube with the following features: spatial resolution (effect ive focal spot size): adjustable with 10 5m, 30 5m, and 100 5m three levels; temporal resolution: adjustable, from 0.1 to 100 ms; X-ray tube current: adjustable, up to 2 mA peak current at 100 5m resolution; anode voltage: 40-60 KVp; synchronization gating control; and lifetime: up to 3000 hours. The primary application of the proposed x-ray source is for small animal imaging related medical research and diagonosis. The major research design and methods to achieve the proposed development goals include: 1) Construction of the micro-focus x-ray tube with resolution of 30 5m based on Phase I study; 2) Development of the compact CNT field emission 10 5m micro-focus x-ray source meeting key Phase II targets; 3) Design and assembly of the compact electronic c ontrol system for the x-ray source of Aim 2; 4) Construction of a sealed and portable micro-focus x-ray tube with the specifications of Aim 2; and 5) Demonstration of the high resolution dynamic micro-CT imaging.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government