Thermally-Conductive Nanocomposite Elastomer Boot System (TCNEBS) for V-22 Rotor Blade Leading Edges

Award Information
Agency:
Department of Defense
Branch
Navy
Amount:
$69,988.00
Award Year:
2006
Program:
STTR
Phase:
Phase I
Contract:
N00014-06-M-0278
Award Id:
77082
Agency Tracking Number:
N064-013-0068
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
303 Bear Hill Road, Waltham, MA, 02451
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
004627316
Principal Investigator:
Robert Kovar
Principal Scientist
(781) 890-1338
bkovar@infoscitex.com
Business Contact:
William Thompson
Contracts Manager
(781) 890-1338
bthompson@infoscitex.com
Research Institution:
TEXAS STATE UNIV.
Gary Beall
601 University Drive
San Marcos, TX, 78666
(512) 245-2156
Nonprofit college or university
Abstract
The metal sheath used to protect the V-22 aircraft rotor blade leading edge against sand, rain and ice erosion, and provide heating to prevent ice buildup, is heavy, rigid and expensive. An elastomeric boot can offer lower weight, flexibility, abrasion-resistance and field repairability. However, elastomeric boots have exhibited delamination and creep failure caused by high centrifugal loads and sand and rain droplet impact damage. These elastomeric boots also have poor deicing characteristics. Infoscitex and Texas State University propose to develop a thermally-conductive, nanocomposite elastomer boot system, called TCNEBS, that provides sand and rain erosion-resistance, reinforcement against centrifugal shear forces and protection against rain droplet impact damage. The TCNEBS will exhibit high thermal conductivity through the thickness, enabling rapid thermal deicing and can be adhesively bonded to the leading edge in the field as a premolded boot applique to replace a damaged or worn boot. In Phase I, we will select TCNEBS candidate materials, produce test specimens and evaluate TCNEBS adhesion, sand and rain erosion-resistance and creep-resistance at a recognized test facility. Deicing capability will be demonstrated. The TCNEBS enables unique, in-flight blade flexing not possible with the metal sheath. The Infoscitex team includes experts in z-oriented nanofiber reinforced elastomers, a helicopter manufacturer and an elastomer supplier. BENEFITS: Successful development of the TCNEBS will increase the reliability, survivability and mission lifetime of military rotary wing aircraft, such as the V-22 Osprey, in severe sand, rain and ice environments. The added flexibility of a TCNEBS-equipped composite blade will enable complex twisting and flexing maneuvers in-flight that are not possible with metal protective sheaths.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government