Catheter Guidance System for RF Ablation of Arrhythmias

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$2,957,113.00
Award Year:
2009
Program:
SBIR
Phase:
Phase II
Contract:
2R44HL079726-04
Award Id:
75715
Agency Tracking Number:
HL079726
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
INFOSCITEX CORPORATION, 303 BEAR HILL RD, WALTHAM, MA, 02451
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
ANNAGALEA
(781) 890-1338
AGALEA@INFOSCITEX.COM
Business Contact:
STEPHENMATTOX
() -
smattox@infoscitex.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): Building on the accomplishments of the prior Phase I and Phase II NIH SBIR grants in which Infoscitex was the lead institution and MIT was the subcontractor, in this Phase II competitive renewal grant application we pro pose to develop a commercial quality catheter guidance system that will allow clinicians to treat ventricular tachycardia (VT) with radio frequency (RF) ablation. This system features an innovative single equivalent moving dipole (SEMD) inverse algorithm t hat reduces the total time required to locate the site of arrhythmia, precisely position an RF ablation catheter, and only requires that the patient be maintained in the arrhythmia for a few beats. During the first two years the team at Infoscitex will des ign and construct the commercial quality catheter guidance system while Professor Cohen at MIT will conduct animal studies using the prototype catheter guidance system developed during Phase II in order to refine the algorithms and procedures for using thi s system and to test the efficacy of the system in animal models of VT. During year 3 of this project, Dr. Cohen at MIT will test the commercial quality system in animal models of VT and the engineering team at Infoscitex will implement any modifications d ictated by the animal testing. In addition, during the Phase II competitive renewal, we will take the steps needed to prepare for the successful commercialization of this technology either by spinning out a startup company or through licensure of the techn ology to an established company. PUBLIC HEALTH RELEVANCE: Ischemic heart disease is perhaps the most common pathophysiologic substrate for the development of ventricular tachycardia (VT). VT also occurs in a wide variety of different types of structural he art disease including non-ischemic dilated cardiomyopathy, hypertrophic cardiomyopathy, valvular disease, congenital heart disease, and primary electrophysiological abnormalities such as Wolff-Parkinson-White Syndrome [3]. However, it is estimated that 80% of sudden cardiac deaths attributed to arrhythmias occur in patients with a prior myocardial infarction (MI). The electrical properties of infarcted tissue can cause formation of a reentrant circuit and precipitation of a lethal VT. These regions can also become points of abnormal initiation of impulse activity. Transient myocardial ischemia, perhaps caused by coronary spasm or unstable platelet thrombi, can lead to death via the same mechanisms. This research is aimed at the development of a commercial qu ality catheter guidance system that will facilitate clinicians in treating VT with radio frequency (RF) ablation. This system features an innovative single equivalent moving dipole (SEMD) inverse algorithm that reduces the total time required to locate the site of arrhythmia, precisely position an RF ablation catheter, and only requires that the patient be maintained in the arrhythmia for a few beats. This clinical system will ultimately permit RF ablation to become an effective and efficient tool for treat ing a wide variety of VT, reducing mortality and morbidity from this prevalent clinical problem.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government