SBIR Phase I: Real-time active image stabilization for microscopy

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$150,000.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
1046762
Agency Tracking Number:
1046762
Solicitation Year:
2010
Solicitation Topic Code:
NM
Solicitation Number:
n/a
Small Business Information
Mad City Labs, Inc.
2524 Todd Drive, Madison, WI, 53713-2317
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
127635618
Principal Investigator:
Eric Drier
(608) 298-0855
eric@madcitylabs.com
Business Contact:
Eric Drier
PhD
(608) 298-0855
eric@madcitylabs.com
Research Institution:
Stub




Abstract
This Small Business Innovation Research (SBIR) Phase I project is aimed at developing an integrated system to stabilize a conventional high-end, inverted optical microscope to the precision required to routinely achieve the imaging power of emerging super-resolution (SR) microscopy techniques. These recent methods, enabled by particular photo-physical properties of certain fluorescent probes, have circumvented the diffraction limit normally associated with light microscopy and pushed it into realms thus far only achievable with electron microscopy. These methods put very high demands on the stability of the microscopy system. Conventional microscopes fail to meet these demands, and sample drift occurs relative to the image detector that can destroy the SR capabilities of the imaging system if this drift is not compensated. This project will integrate a 3-axis piezo-driven nanopostioning microscope stage with a closed-loop feedback system using data generated from an EMCCD camera, which will also serve as the image detector for the system. Fluorescent fiduciary references sparsely distributed within the sample will serve as anchor points from which to assess sample drift, and produce compensatory movement using the nanopositioning stage to stabilize the sample relative to the image detector in all 3 dimensions, in real-time. The broader impact/commercial potential of this project lies in making localization-based SR imaging methods routinely useful to working biologists. This means making them technically straightforward to implement, and economically accessible. Presently, there is no single source for the components required to stabilize a conventional microscope and make it routinely useful for SR microscopy. Scientists hoping to implement these very broadly applicable techniques are left with the daunting task of assembling a working system from its many individual components, and then getting these components to work together seamlessly as required. Our goal is to develop and then commercialize a fully-integrated microscope stabilization and imaging system based on a nanopositioning stage, an EMCCD camera, and software enabling real-time image-based feedback control of the sample?s position. It will be developed with localization-based SR microscopy in mind, but will be useful for any imaging experiment that requires long-term sample stability and image acquisition, such as extended live-cell imaging. This system will greatly simplify the technical challenges faced by biologists wanting to utilize SR microscopy as an experimental tool, enabling them to convert and extend their current inverted microscopes into potentially a large number of SR-capable imaging systems.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government