SBIR Phase I: Novel volumetric efficient design and packaging of a broadband integrated circulator-antenna (BICA)

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$149,615.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
1047120
Award Id:
n/a
Agency Tracking Number:
1047120
Solicitation Year:
2010
Solicitation Topic Code:
IC
Solicitation Number:
n/a
Small Business Information
36 Station St, 12B, Canton, MA, 02021-1938
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
829728067
Principal Investigator:
Andrew Daigle
(781) 562-0756
daigle@metamagneticsinc.com
Business Contact:
Andrew Daigle
PhD
(781) 562-0756
daigle@metamagneticsinc.com
Research Institute:
Stub




Abstract
This Small Business Innovation Research (SBIR) Phase I project pursues the development of a novel volumetric efficient broadband integrated circulator antenna (BICA) module for wireless and satellite communication as well as radar applications. Metamagnetics proposes to leverage its expertise in advanced metamaterials and textured ferrite composite development to realize a broadband electronic bandgap (EBG) metamaterial as a means for achieving a dramatic profile reduction (<ë/60 in contrast to ë/4) in planar antennas. Following a novel design approach, the low profile antenna is combined with a circulator to produce the BICA as a single component leading to significant volumetric savings and highly efficient power transfer in communication and radar systems, among other figures of merit. Phase I activities focus on development of the ultra wideband EBG metamaterial including the design and refinement of component materials, such as specially designed textured ferrite substrates operating in the UHF to S frequency range. Further, broadband antenna and ferrite circulator devices are co-designed as a single component to achieve efficient power transfer and enhanced power handling capability. This combination of an original design approach with the development of advanced metamaterials has never been attempted and represents a highly innovative and enabling advance. The broader impact/commercial potential of this project includes addressing the critical needs of both commercial and Department of Defense (DoD) markets. The proposed dual use metamaterial-based integrated circulator-antenna technology holds promise of significant performance improvements in height, area, and weight reduction over current technologies in wireless, satellite communication, and radar systems. The size of DoD transmit receive module and circulator markets alone is estimated at more than $600M in 2011 poised for growth at a cumulative aggregate rate of 7 percent over thenext 5 years. The success of Phase I in improving the bandwidth and increasing volumetric efficiency of radio frequency front ends has an enormous potential to impact commercial communications and DoD industries and stimulate the U.S. economy by producing advanced technologies and, importantly, high-skilled jobs. The Phase I effort will be performed by a veteran-owned small-business. Employees include a woman as minority-owner and COO and two students actively pursuing engineering doctorates. As part of this Phase I, all tuition expenses incurred during the length of program will be covered. Three additional students pursuing graduate studies in entrepreneurship will participate in conducting market research as well as business and product development activities associated with this Phase I program.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government