SBIR Phase I: High-Throughput Agile Robotic Manufacturing System for Tile Mosaics

SBIR Phase I: High-Throughput Agile Robotic Manufacturing System for Tile Mosaics

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1113606
Agency Tracking Number: 1113606
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2011
Solicitation Year: 2010
Solicitation Topic Code: IC
Solicitation Number: N/A
Small Business Information
21 Drydock Avenue, Boston, MA, 02210-2397
DUNS: 831119073
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Edward Acworth
 (617) 418-1928
 acworth@artaic.com
Business Contact
 Edward Acworth
Phone: (617) 418-1928
Email: acworth@artaic.com
Research Institution
 Stub
Abstract
This Small Business Innovation Research (SBIR) Phase I project will demonstrate a proof-of-concept prototype of a high-throughput agile tile mosaic manufacturing system. Mosaics have proven to be a great source of visual splendor for thousands of years. Despite its prominence in art and architecture, mosaic is arduous to design and assemble by hand. The goal of this Phase I work is to prove the feasibility of a programmable high-throughput multi-head robotic tile assembly system to enhance the production agility of mosaic tilings. Research innovation in Phase I will merge the benefits of parallel tile placement with robust high-capacity tile cartridges to radically decrease tile mosaic fabrication time and associated tile mosaic assembly costs. The measurable objective of Phase I is a 5x increase in production throughput over current state-of-the-art mosaic manufacturing technology, while enhancing tile placement accuracy. The system will be capable of producing both template and ?mass customized? mosaics. In Phase II, the prototype will be refined into a commercial grade system, integrated with an Enterprise Resource Planning system, and placed into service in Artaic?s production environment. Successful Phase I/II demonstration will significantly lower the time and cost for manufacturing mosaics and potentially revolutionize the $76B global tile industry. The broader impact/commercial potential of this project goes beyond art, design, and architecture. Robotic automation will lower the cost of mosaic and increase its societal impact in adorning public, commercial, and residential spaces. The proposed research, if successful, will have a significant impact on agile manufacturing. It will allow penetration into unforeseen markets by reducing the cost of highthroughput flexible assembly. The solution proposed by the research will be immediately applicable to customers and partners, and potentially useful in parallel industries such as medical, pharmaceutical, food, consumer products, and others that will benefit from robotic agile manufacturing enabled mass customization. Agile mosaic manufacturing capability could revitalize the U.S. tile manufacturing industry and create job opportunities. The investigators estimate that a 5x production rate increase will enable a breakthrough price of $19.99, 75% lower than the competition, and for the first time achieve broad market affordability.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government