SBIR Phase I: Gel-Assisted Casting of a Self-Assembling Biocomposite Material

Award Information
National Science Foundation
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Ecovative Design
1223 Peoples Avenue, Troy, NY, 12180-3511
Hubzone Owned:
Socially and Economically Disadvantaged:
Woman Owned:
Principal Investigator
 Daniel Flagg
 (518) 273-3753
Business Contact
 Daniel Flagg
Phone: (518) 273-3753
Research Institution
This Small Business Innovation Research Phase I project will develop an innovative, environmentally benign process for forming net shape products of superior quality and performance from dissimilar biomaterial components. Plastics and foams are dependent upon inherently unsustainable raw materials, require a high embodied energy to produce, and do not readily biodegrade at the end of their useful lives. This project will focus on the further development of an alternative material system: a self-assembling biocomposite which is literally grown in the dark using fungal tissue to bind heterogeneous particles of agricultural waste. The biodegradable material exhibits mechanical properties that rival synthetic foams and offers the potential to transform the multi-billion dollar protective packaging and structural cores industries. However, the thin-walled plastic forms used to shape resulting products during growth have a limited service life and must be replaced frequently. Removing or reducing dependence on these forms, through development of a gelatinizing growth substrate and process, will increase sustainability and yield, and reduce costs to further incentivize widespread adoption. The proposed research will answer questions that will determine whether this gel-assisted casting process is technically and commercially feasible, and therefore laying the groundwork for a Phase II project. The broader impact/commercial potential of this project is difficult to overstate. Conventional methods of producing low-cost, high strength-to-weight ratio materials for protective packaging and building construction use up to 10% of the world's petroleum as feedstock and consume considerable energy in the production process. Mycological material technology eliminates the need for fossil fuel feedstock and currently requires only one-eighth of the energy to produce an equivalent volume as compared to synthetic foam. In addition, the products are non-toxic, fire-retardant, and readily biodegradable. The commercial potential is high, as products made of this material, as currently manufactured, already successfully compete in the marketplace with products made of expanded polystyrene and expanded polypropylene. The benefits to society at large include safer materials, the transition to regional manufacturing which will bolster local economies, the use of domestic byproducts as the primary raw material, lower energy consumption, and a production method which creates less waste and pollution. The successful completion of this project will help United States manufacturers to emerge as world leaders in the production and supply of sustainable materials, with the potential to serve numerous global markets.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government