SBIR Phase II: Novel Polymeric Membrane for Hydrocarbon Separation

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1048608
Agency Tracking Number: 1048608
Amount: $409,578.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: Phase II
Solicitation Number: N/A
Small Business Information
PoroGen LLC
6C Gill Street, Woburn, MA, 01801-0000
DUNS: 128898017
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Yong Ding
 (781) 491-0807
 yding@porogen.com
Business Contact
 Yong Ding
Title: PhD
Phone: (781) 491-0807
Email: yding@porogen.com
Research Institution
N/A
Abstract
This Small Business Innovation Research (SBIR) Phase II project proposes to develop a novel membrane for a broad spectrum of hydrocarbon separations. The initial focus of the project is the development of a selective membrane for efficient separation of hydrocarbons from methane in natural gas processing and separation of hydrocarbons from hydrogen in refinery applications. The chemically robust polymeric membrane will be of a composite configuration comprised of a hollow fiber porous support with a superimposed several hundred angstroms thick separation layer. The nano-structured morphology of the separation layer will enable selective fractionation of hydrocarbon molecules. The broader/commercial impact of this project is the reduction of energy consumption currently used in separation and purification of hydrocarbons found in oil and gas. In addition, if successful, petrochemical industries will reduce emissions of green house gases, including methane and carbon dioxide. The membrane will effect molecular level separation of hydrocarbons and will be capable of operation in harsh environments and at high temperatures. The initial market for this technology is the recovery of natural gas and hydrocarbon liquids from the associated natural gas in remote geographic locations (gas generated during oil production) that is currently flared. Development of the proposed technology will enable recovery of the methane and high value hydrocarbons at the well with extensive economic and environmental benefits. The membrane is expected to find further utility in high value gas and liquid separation applications including hydrogen recovery from refinery fuel gas, olefin/paraffin separation, and generic hydrocarbon fractionation.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government