SBIR Phase II: Investigation of the use of Chlorine Based Oxidants for Removal of Natural Organic Matter using Advanced Oxidation Processes

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1058239
Agency Tracking Number: 1058239
Amount: $491,746.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: Phase II
Solicitation Number: N/A
Small Business Information
5601 Balloon Fiesta Parkway, Albuquerque, NM, 87113-2101
DUNS: 861184133
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Andrew Boal
 (505) 343-0090
Business Contact
 Andrew Boal
Title: PhD
Phone: (505) 343-0090
Research Institution
This Small Business Innovation Research (SBIR) Phase II project will build on the successful results obtained during Phase I. Phase I research indicated that aqueous chlorine can be used as an alternative chemical source for Advanced Oxidation Processes (AOPs), and was capable of producing hydroxyl and other highly reactive radicals when illuminated with ultraviolet light. These radicals were harnessed to destroy and mineralize small organic molecules and impact the structure of natural organic matter found in surface water. Phase II research will focus on developing a solid understanding of how aqueous chlorine based AOPs can be integrated into overall water treatment processes, compare the efficacies of aqueous chlorine and hydrogen peroxide based AOPs, and demonstrate that solar ultraviolet light can be used to drive this process. The broader impacts of this research center around the ability to provide a greener, more efficient AOP which can be used to more economically produce high quality water. Phase II research will deliver an increased understanding of chlorine-based AOP technology, enabling the development of products with enhanced capabilities towards the removal of trace organic contaminants from water. Successful completion of this research will positively impact the quality of both drinking water and packaged beverages. In addition, the research could permanently remove contaminants from the environment through mineralization, preventing unintended release from municipal and industrial wastewater plants. Finally, since this process can be driven using solar energy, the resulting technology will be deployable in rural and developing regions of the world at an affordable cost.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government