A biodevice for implanting insulin-producing cells in a diabetic patient without

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43DK093145-01
Agency Tracking Number: R43DK093145
Amount: $906,104.00
Phase: Phase I
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: NIDDK
Solicitation Number: DK10-008
Small Business Information
1400 N.W. 10TH AVENUE, Suite 611 (Loc.code D-431), MIAMI, FL, 33136-
DUNS: 009397710
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (305) 243-1913
Business Contact
Phone: (305) 243-1913
Email: platta@med.miami.edu
Research Institution
DESCRIPTION (provided by applicant): A closed loop, glucose sensing, and insulin responsive system could dramatically improve treatment options for insulin dependent diabetics. Current artificial systems, however, lack the ability to provide this precise control. Clinical islet transplantation, the intrahepatic loading of allogeneic islets, shows the potential to provide this intimate control, by transplanting the very cells with this inherent glucose sensing/insulin secreting capacity. Limiting islet transplantation, however, is the significant loss and dysfunction of islets following implantation, due to the poor engraftment environment and significant immunological attack. We have sought to address these roadblocks by developing two platform technologiesfor optimizing islet environment and blocking immune attack: 1) three dimensional scaffolds; and 2) micron thick conformal biomaterial coatings. Our long term goal is to converge these two platforms to reduce the islet load required for efficacy, minimizeislet loss following transplant, and to dramatically reduce the need for systemic immunosuppression. In this proposal, we seek to optimize these promising platforms at the scale necessary for translation to the clinic. We seek to develop technologies to improve the efficiency and consistency of our macroporous scaffolds, as well as our conformal coating method. To achieve these aims, we seek to fabricate equipment and optimize protocols, as well as evaluate the efficacy of these platforms in pre-clinical models of diabetes. Our preliminary data strongly support the feasibility of this proposal, as well as our strategic collaborations with the Diabetes Research Institute at the University of Miami. Accomplishment of our aims will dramatically enhance the efficacy of islet transplantation, thereby providing a significant enhancement in treatment options for insulin dependent diabetics. PUBLIC HEALTH RELEVANCE: The development of treatment options for insulin-dependent diabetics that provide a highly regulated glucose sensing and insulin secreting closed loop system could result in dramatic improvements in quality of life, as well as a substantial decrease in disease management complications. We seek to develop a cell-based, bioartificial pancreas systemthat mimics the native pancreas, by providing an optimal three dimensional environment to the transplanted cells, as well as immunoprotection. This project seeks to translate our promising platform to the clinic through the scale up of our current fabrication methods, as well as initiating pre- clinical testing. We believe these studies are highly relevant to the mission of the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK) and are designed to result in a significant impact on public health.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government